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ABSTRACT

Existing reinforcement learning (RL)-based adaptive bi-
trate (ABR) approaches outperform the previous fixed con-
trol rules based methods by improving the Quality of Ex-
perience (QoE) score, as the QoE metric can hardly provide
clear guidance for optimization, finally resulting in the unex-
pected strategies. In this paper, we propose Tiyuntsong, a self-
play reinforcement learning approach with generative adver-
sarial network (GAN)-based method for ABR video stream-
ing. Tiyuntsong learns strategies automatically by training
two agents who are competing against each other. Note that
the competition results are determined by a set of rules rather
than a numerical QoE score that allows clearer optimization
objectives. Meanwhile, we propose GAN Enhancement Mod-
ule to extract hidden features from the past status for pre-
serving the information without the limitations of sequence
lengths. Using testbed experiments, we show that the utiliza-
tion of GAN significantly improves the Tiyuntsong’s perfor-
mance. By comparing the performance of ABRs, we observe
that Tiyuntsong also betters existing ABR algorithms in the
underlying metrics.

Index Terms— Adaptive Bitrate Streaming, Self-play
Reinforcement learning

1. INTRODUCTION

Recent years have witnessed a rapid growth of online video
streaming applications and services [1]. To achieve smooth
video playback under various network conditions, modern
client-side video player adopts ABR algorithm to dynami-
cally determine the bitrate of next video chunk to download
to achieve high QoE scores including high video bitrate, low
rebuffering, etc. Most of the approaches, such as throughput-
based[2], buffer-based[3] and mixed schemes[4, 5] employ
fixed control rules which determine future video bitrates via
carefully tuned strategies and thresholds. However, these ap-
proaches are often designed with strong assumptions of the
real-world network conditions and heavily rely on the fine-
tuned parameters, which results in sensitivities to network
conditions and unexpected performances (§2.1). To address
these problems, researchers [6] have proposed to leverage

reinforcement learning (RL) methods to learn an algorithm
from scratch without any network presumptions. In partic-
ular, the state-of-the-art deep reinforcement learning (DRL)
scheme Pensieve [6] outperforms existing ABRs in some set-
tings [7]. These work tries to optimize a neural network to-
wards a better QoE score, in which the fine-tuned parame-
ters have significant impacts on the performance. However,
through the experiment, we observe that RL-based method
often obtains high QoE scores via some tricks due to the lack
of guidance for optimization in QoE (§2.2). As a result, de-
spite its abilities to obtain higher numerical QoE scores, such
training schemes may generate a strategy that doesn’t meet
the basic rules of the ABR algorithm.

Our key idea is to regard the reward as a rule instead of
QoE metrics (§2.3). The rule (§4.1) is allowed to be con-
structed by any methods, such as a logistic and AI method,
aiming to identify the better one from two candidates. Un-
like previous work, the rule will highlight the priority of opti-
mization to avoid occurring unexpected strategies. The novel
idea requires a new RL framework to match it. Thus, we
propose Tiyuntsong1, a self-play RL method with GAN for
ABR video streaming (§3). Tiyuntsong trains two agents
simultaneously for generating a well-performed ABR algo-
rithm under different network conditions. In details (§3.3),
Tiyuntsong first uses two agents to provide the video stream-
ing services on the same network condition and video con-
tent respectively. Next, it leverages the rule to determine who
is the winner. Finally, it assigns the reward of each agent
as {win:1, lose:0} and updates the two agents’ gradients. In
brief, Tiyuntsong approaches a Nash equilibrium via the self-
play method, whereas traditional RL methods diverge.

Besides, we further present GAN Enhancement Mod-
ule (§3.2), a GAN-based method to extract hidden features
from the past status that facilitate Tiyuntsong to store the in-
formation without the limitation of sequence length. During
the training process, the model generates future hidden fea-
tures based on current state and hidden features, and then es-
timates the probability of whether the hidden feature comes

1Tinyuntsong: Also named as Cloud Ascending Ladder, a qinggong skill
in the Chinese wuxia novel The Heaven Sword and Dragon Saber by Jin
Yong. The skill enables the user to travel at high speeds and leap to extreme
heights by stepping one foot on the other one.



from the winning sample or not.
In the rest of our paper (§4), first, we collect a large cor-

pus of network traces from alternative public datasets for
training and validating. Next, we leverage Elo-Rating [8],
a classic rating-based system to compute the performance of
Tiyuntsong via win rate (§4.1). Finally, using a testbed ex-
periment (§4.2), we first discuss Tiyuntsong’s neural network
architecture (§4.2.1). After that, we prove the importance of
GAN Enhancement Module (§4.2.2). In all considered sce-
narios, Tiyuntsong betters existing ABR approaches in both
win rate and underlying metrics of ABR including bitrate and
rebuffering as well as smoothness (§4.2.3).

To sum up, our contributions are as follows:
. We figure out the weakness of RL-based ABR algo-

rithms and suggest a novel sight to redefine the reward metric
for them: leverage logistic rules instead of QoE metrics.

. To the best of our knowledge, we are the first to use
self-play RL method to tackle the ABR video streaming prob-
lem. Results indicate that Tiyuntsong not only avoids deviat-
ing from the fundamental rule but also betters recent work.

. Traditional fusion of RL and GAN method [9] pays
more attention to improving the efficiency of imitation rather
than preserving the useful information as described in this pa-
per. In brief, we propose a novel perspective for the applica-
tion of GAN, which also yields a reliable and effective result.

2. RELATED WORK AND MOTIVATION

2.1. ABR Algorithms Overview

Client-based ABR algorithms are mainly categorized into
four types [10]: throughput-based, buffer-based, mixed and
RL-based. PANDA [2] predicts the future throughput for
eliminating the ON-OFF steady issue. However, due to
the current lack of throughput estimation method, these ap-
proaches still result in poor ABR performance. Thus, many
approaches are designed to select the proper bitrates based on
playback buffer size observed. e.g., BOLA [3] turns the ABR
problem into a utility maximization problem and solve it by
using the Lyapunov function. Nevertheless, the buffer-based
approach fails to tackle the long-term bandwidth fluctuation
problem. Then, to tackle the challenge, mixed approaches,
such as MPC [4] and DynamicDASH [5], is proposed to se-
lect bitrate for next chunk by adjusting its throughput dis-
count factor based on past prediction errors and predicting its
playback buffer size. Note that such model-based approaches
require careful tuning, because they rely on parameters that
are quite sensitive to network conditions, which results in the
poor performance in unexpected network environments. To
address these issues, several attempts [6] have been made to
optimize ABR algorithms based on RL method due to the dif-
ficulty of tuning mixed approaches for handling different net-
work conditions.
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Fig. 1. This group of figures shows the drawback of tradi-
tional RL-based ABR methods: After trained Pensieve with
default parameter settings about seven days, we observed
that: 1) Its policy was simple and effective; 2) It still main-
tained a high QoE score. However, it’s clear that the proposed
method deviates from the basic rules of ABR.

2.2. The Trap of Traditional RL-based Method

However, traditional RL-based methods still have their draw-
backs. Considering the ABR process as a Markov Decision
Process (MDP), in recent years, many schemes have been
proposed to learn ABR algorithms via RL method [11, 6].
Despite the outstanding performances that RL-based ABR
algorithms achieve, these schemes suffer from a key limita-
tion: They optimize their neural network via enhancing QoE
scores. However, achieving a high QoE score doesn’t nec-
essarily equal to generate an exemplary algorithm. For ex-
ample, the experimental results of state-of-the-art RL-based
scheme Pensieve2 is illustrated in Figure 1. While Pensieve
converges, its policy can be generalized as

Fetching lowest bitrates till the buffer has enough space
and time to fetch highest bitrates.

That is because though RL methods will successfully train
the model under the case which only needs to optimize one
metric (e.g., to play higher scores for Atari games), these
schemes lack the abilities to tackle the problem affected by
multiple factors directly. For example, in ABR problems, re-
cent work [3, 4, 6] leverages reward functions (e.g., QoE
metrics) with a weighted sum of several underlying metrics to
take the place of the multi-factor optimization (Several met-
rics must be optimized together). Hence, QoE driven RL-
based approaches have the abilities to obtain a relative good
numerical reward, but they may also provide users with un-
expected and unstable viewing experience. This problem im-
poses critical challenges to RL-based ABR algorithm.

2.3. Self-play Method

AlphaZero [12], a scientific breakthrough in AI, is trained
solely based on self-play RL and periodically matched against
several games. To tackle the traditional RL methods’ prob-
lem, we thereby consider following AlphaZero to train the al-
gorithm via self-play RL. However, static games with incom-
plete information (e.g., training ABR with two agents) are
much dissimilar and more complicated than dynamic games

2https://github.com/hongzimao/pensieve
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Fig. 2. Tiyuntsong overview

with complete information such as Go. Thus, we meet new
challenges: How to design a proper model and how to define
a suitable reward representation for ABR?

3. TIYUNTSONG’S MECHANISM

In this section, we provide the design steps and the training
methodology of Tiyuntsong 3. As stated before (§2.2), con-
ventional RL is not a suitable scheme to solve the complex
reward function problem in which its reward is computed as
a linear combination of multiple factors. We, therefore, sug-
gest a novel sight to describe the reward function: Only to
represent the reward as win or loss instead of an actual reward
score. Following this sight, we propose Tiyuntsong, a self-
play with RL method which learns an algorithm automatically
based on the win or loss signal only. As illustrated in Figure 2,
two agents compete for each other in the same environment
and then update their network based on the competitive result.

3.1. The Design of Agent

We first initialize two agents A0 and A1. It is worth noting
that Tiyuntsong’s neural network architecture is quite differ-
ent from the common RL’s representation due to the distinc-
tiveness of the ABR task. The rest of the details are described
as follows.
State: Tiyuntsong’s learning agent takes the input state of
time-slot t st = {T, d, q, r, b,S, h} into neural network,
where T means the past throughput measured by a client for
past k sequence; d represents the time for downloading past
k sequence; q is the previous video bitrate selected of past
k sequence; r is the remaining video playback time; b is a
buffer length used by the client; S is a vector that represents
the video sizes of the next video chunk. The last one h is
a vector that reflects that extra features of the past, and it is
generated by the GAN Enhancement Module (See §3.2).
Action: The action space is discrete. The output of the pol-
icy network is defined as a probability distribution: f(st, at),
meaning the probability of selection action at being in state
st. The action at is an n-dims vector, which represents the
candidate of video bitrate for the next chunk.

3https://github.com/thu-media/tiyuntsong

Reward: Our reward is defined as a result: r ∈ {0, 1} judged
by Rule. During the training process, we use Rule to com-
pute the win rate of two agents for each epoch, and in the
result “0” means loss and “1” represents victory. We notice
that Rule can be represented as not only a human-made lo-
gistic algorithm but also a neural network model generalized
by AI. The details of Rule are described in §4.1. Based on
the results calculated, we can estimate the win rate wi for
each agent Ai. We further utilize Elo Ratings to estimate the
instant performance via win rate (§4.1).

3.2. GAN Enhancement Module

In recent work [13, 6], the lifetime of each bitrate decision
has been modeled as an MDP (Markov Decision Process),
meaning that action is only related to the status of the tar-
get rather than relying on the prior states. However, this as-
sumption lacks evidence. [13] only illustrates that through-
put factors can be efficiently captured by Hidden-Markov-
Model (HMM). Still, in [6], the authors also consider different
numbers of past throughout measurements to represent state.
In general, previous work leverages a past k steps status ob-
served to reckon the status of the target in MDP, and the limi-
tation of sequence length leads to missing crucial information
of the past, such as the maximum and minimum values of the
observed throughput.
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Fig. 3. GAN Enhancement Module

Thus, we present GAN Enhancement Module to automat-
ically generate the hidden features from the past to break
the limitation of sequence length. As illustrated in Figure 3,
the module consists of a generator G and a discriminator D,
where G is a function represented by several fully connected
layers using leaky RelU with parameters θg , and D is also a
function represented by multilayers with parameters θd. For
each step t, G is used for generating next hidden features ht
according to the state st−1 and hidden feature ht−1, and D
outputs a single scalar pt ∈ [0, 1) to estimate the probability
that ht belongs to the historical winning samples. Inspired by
LSGAN [14], we first update D by descending its gradient
according to Ld (Eq. 1). We then update G by descending its
gradient via Lg (Eq. 2). Here w means the winning samples



defined as w = {h0, h1, · · · , hk}, where reward rk = 1.

min
D

Ld =
1

2
Ex∼pw(x)[(D(x)− 1)2]+

1

2
Et∼pg(t)[(D(G(st−1, ht−1)))

2]

(1)

min
G

Lg =
1

2
Et∼pg(t)[(D(G(st−1, ht−1))− 1)2] (2)

3.3. Training Methodology

We now start to discuss how to train Tiyuntsong. In our work,
we use the actor-critic method as the fundamental algorithm
of Tiyuntsong. Each agent is composed of a policy network
and a value network. The key thought of the policy gradi-
ent algorithm is to update the parameter in the direction of
increasing the accumulated reward. The gradient of the ac-
cumulated reward with respect to policy parameter θ can be
written as

∇Eπθ [
∞∑
t=0

γtrt] = Eπθ [∇θ logπθ (s, a)A
πθ (s, a)]. (3)

We can use Eθ[∇θlogπθ(s, a)Aπθ (s, a)] as its unbiased
form, where A(st, at) is called the advantage of action at in
state st which satisfies the following equality: A(at, st) =
Q(at, st)−V (st), where V (st) represents the estimate of the
value function of state st and Q(at, st) is the value of taking
certain action at state st. Next, we consider to use n-step Q-
learning for optimizing the value network. The value network
will be updated as

θv ← θv − αv
∑
t

∇θv (rt + γV (st+1|θv)︸ ︷︷ ︸
Q(at,st)

−V (st|θv))2. (4)

Here V (st|θv) is the estimation of V (st); The direction
of changing parameter θv is the negative gradient of it; αv
is the learning rate for the value network. We also add the
entropy of policy in the object of policy network, which can
effectively discourage the network to converge to sub-optimal
policies. Thus, the update of θ will be written as

θ ← θ+αp
∑
t

∇θ logπθ (st, at)A(st, at)+β∇θH(πθ(·|st)),

(5)
where H(·) is the entropy of the policy. After convergence,
the value network will be abandoned, and we only use policy
network to make decisions; αp is a learning rate function; β
is a hyper-parameter regarded as the weight of exploration.
For each epoch i(i > 0), the parameters αpi and αvi can be
computed by the equalization as follows:

αpi , αvi =

{
(αp0 , αv0)(wi logwi + 2.0) wi < 0.5

−(αp0 , αv0)wi logwi wi ≥ 0.5,
(6)

in which wi is the win rate for each training epoch i; αp0 and
αv0 are initialized hyper-parameters which control the overall
learning rate of policy network and value network. Dynamic
learning rate can effectively avoid a considerable gap between
the two agents.

4. EVALUATION

4.1. Experimental Setup

Datasets We collect about 2,300 network traces from
different public datasets for training and evaluating
Tiyuntsong. The details of our network traces are com-
posed of Norway [15], Synthetic Network Traces [6], Bel-
gium [16], FCC [6], and Oboe [7].

Table 1. The rule Used In The Experiment
(a)

Rule b0 > b1 b0 = b1 b0 < b1
r0 > r1 Table 1(b) 1 1
r0 = r1 0 Table 1(c) 1
r0 < r1 0 0 Table 1(b)

(b)

r0/b0 > r1/b1 1
r0/b0 = r1/b1 0
r0/b0 < r1/b1 Table 1(c)

(c)

s0 > s1 1
s0 = s1 0/1
s0 < s1 0

The Design of Rule A good ABR algorithm mainly consists
of three underlying metrics [5]:

. Bitrate: To play the video at the highest sustainable
quality, such as bitrate and video quality.

.Rebuffering: To avoid rebuffering events that occur due
to the empty client buffer.

. Smoothness: Keep the bitrate in little change during the
entire session.

To this end, we implement an intuitive logistic rule4 for
evaluation based on their priority (See in Table 1), in which bi
denotes total bitrate, ri is total rebuffer time and si represents
total bitrate change for each agent i ∈ {0, 1}.
Metrics We leverage Elo Ratings [8], a traditional method
for calculating the relative performance of players in zero-
sum games, to evaluate Elo Ratings based on win rate. We
first select several previously proposed approaches and test
their performance respectively under the same environment.
Next, we use rule to estimate their win rate. Finally, we
compute the Elo rating for these approaches. In our work,
these scores are defined as baselines. For each epoch, the

4We repeat that Rule is allowed to design in any way, i.e., logistic or
AI methods, etc. In this paper, due to the space limitations, we only give an
intuitive rule for evaluating Tiyuntsong because too many statements about
the rules will be badly miscast here.



Arch. Elo Timespan(it/s)
FC 1033 1.28

LSTM 1057 0.77
2D-CNN 1040 1.16
1D-CNN 1094 1.04

Constrained 977 -
Throughput-Rule 1023 -

Table 2. Comparing performance (Elo Ratings) of
Tiyuntsong with different neural network architectures in-
cluding Fully Connected, 2D-CNN, 1D-CNN and LSTM. Re-
sults are evaluated under same network traces and video de-
scription in 50 steps.

agent compares the result with baselines and then computes
the Elo rating through the win rate. In this experiment, we set
hyper-parameter K = 10 and initialized rating I = 1000 for
the Elo system. More details are described in our repo..
Testbed Setup We utilize Sabre [5], a state-of-the-art open-
sourced simulation environment for ABR algorithms, to pre-
cisely emulate the ABR’s process in an offline environment.
Sabre is a Python tool that can quickly evaluate ABR algo-
rithms in an emulated environment similar to real production
players. For each step t, the agent uses the Sabre environment
to simulate the entire session with given video descriptions
and network traces.

4.2. Experiments and Results

4.2.1. Tiyuntsong with Different Architectures

In this experiment, we compare Tiyuntsong’s network archi-
tecture to the following network architectures which collec-
tively represent the architecture candidates:

Fully Connected: FC1
64 → FC2

128 → FC3
64

LSTM: LSTM1
64 → LSTM2

64 → SELF-ATTENTION1
64

2D-CNN: CONV2D1
64 → MAXPOOL1

2 → CONV2D2
64 →

MAXPOOL2
2 → FC1

64

1D-CNN∗: CONV1D1···6
64 → MERGE1 → FC1

64

We train and test under Sabre with the same network
traces and video descriptions. In this experiment, we set
γ = 0.99, β = 0.02, step = 50 for only testing their per-
formance instead of convergence. We report the result in
Figure 9, where 1D-CNN is the Tiyuntsong’s network archi-
tecture. The obtained results indicate that 1D-CNN neural
network architecture succeeds in improving the Elo Ratings,
with improvements in average Elo Ratings of 37 - 61. We
also observe that there is no obvious difference between these
architectures regarding operational efficiency.

4.2.2. Tiyuntsong vs. Tiyuntsong without GAN

In this part, we design an experiment to confirm whether the
GAN Enhancement Module is effective or not. We set step =
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50 and compare Tiyuntsong-GAN with Tiyuntsong with-
out using GAN Enhancement Module on the same network
traces, and use two existing approaches: constrained and
throughput rule as baselines. The experimental result is illus-
trated in Figure 4. As expected, we observe that Tiyuntsong-
GAN outperforms Tiyuntsong with improvements in average
Elo Ratings of 13.3% after 50 steps.

4.2.3. Tiyuntsong vs. Existing ABR Approaches

In this experiment, we aim to evaluate the Elo Ratings of
several existing ABR algorithms including BOLA, Dynamic-
DASH, Throughput-based, Constrained, and Pensieve (QoE-
lin). BOLA and DynamicDASH have been implemented
in [5], and we use the harmonic mean of past five through-
put measured to present the throughput-based rule. More-
over, we denote the constrained rule to select the intermediate
chunk of the next video chunks and train a model via Pen-
sieve optimized by QoE-lin [4]. We train Tiyuntsong about
2,000 epochs on the network traces datasets. We use 80%
dataset for training, 20% for validating and leverage Oboe
dataset for testing. Figure 5 shows the performance of train-
ing Tiyuntsong for 2,000 steps, we observe that Tiyuntsong
performs better than the existing approaches after 1,800 steps.
We also report Tiyuntsong’s win rate and the CDF distribution
of three underlying metrics in Figure 6. Compared to Dynam-
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Fig. 6. Comparing Tiyuntsong with existing ABR approaches
on the same network traces. Results is shown with the win
rate and the distribution of average bitrate, rebuffering time
and average bitrate change for the approaches. Results show
that Tiyuntsong wins existing approaches, with the win rate
of 62% to 100%.

icDash, Tiyuntsong improves the average bitrate by 3.19%,
decreases the average rebuffering time by 4.92%, and reduces
the 95th percentile average bitrate change by 16.47% respec-
tively. As expected, we also observe that Pensieve does reach
an overwhelming advantage on the QoE metric but fails to
perform well under some underlying metrics such as average
bitrate, and it also proves our motivation of this work.

5. CONCLUSIONS AND FUTURE WORK

We propose Tiyuntsong, self-play RL approach to select bi-
trates for next video chunk. Unlike previously proposed ap-
proaches, Tiyuntsong uses two agents to compete against each
other for automatically generating a better ABR algorithm.
Experimental results prove that Tiyuntsong has achieved the
state-of-the-art ABR algorithm via self-play. Additional re-
search may focus not only to accelerate the training process
but also to extend our work to solve the general incomplete
information game problem.
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A. APPENDIX

This supplementary material details the principle of
Tiyuntsong5. Due to the length of the supplemental material,
we list a content to facilitate the selection of interested parts
for review. Although these contents have NOT appeared in
the main text, we believe that they will help the reviewer get
a thorough understanding of Tiyuntsong.

• Related work including adversarial learning (§B.1) and
ABR’s background (§B.2);

• Tiyuntsong’s network architecture (§C.1), training pro-
cedure (§C.2);

• Tiyuntsong’s training time (§D.1), another experiment
and result for evaluating Tiyuntsong’s performance un-
der different network architecture candidates (§D.2);

• Additional discussions: The relationship between tradi-
tional QoE functions and Rules (§E.1), Why these net-
work traces are selected? (§E.2)

5In memory of Jin Yong (1924 - 2018).
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Fig. 7. An overview of ABR video streaming.

B. RELATED WORK

B.1. Adversarial Learning

Since GAN first proposed [17], the adversarial discriminative
learning method has been widely used in the various fields.
The original GAN model is short of the loss function. Thus,
many approaches, such as LSGAN [14] and WGAN-gp [18],
extend GAN’s training methodology with strong theoretical
proof. Moreover, adversarial learning has also been applied
to extract features. For example, CoGAN [19] uses GAN to
solve the domain transfer issue, and ADDA [20] proposes a
GAN-based generalized framework for domain adaptation.

B.2. Background on ABR

Due to the rapid development of network services, watch-
ing video streaming online has become an upcoming trend.
Today, adaptive video streaming, such as HLS (HTTP Live
Streaming) and DASH, an algorithm that dynamically selects
video bitrates via network conditions and client’s buffer oc-
cupancy, is the predominant form of video delivery. The tra-
ditional video streaming architecture is shown in Figure 7,
which consists of a video player client with a constrained
buffer length and an HTTP-Server or Content Delivery Net-
work (CDN). The video player client decodes and renders
video frames from the playback buffer. Once the stream-
ing service starts, the client fetches the video chunk from
the HTTP Server or CDN orderly by an ABR algorithm,
and, in the meanwhile, the ABR algorithm, implemented
on the client side, determines the next chunk N and next
chunk video quality QN via throughput estimation and cur-
rent buffer utilization.After finished to play the video, several
metrics, such as total bitrate b, total re-buffering time r and
total bitrate change s will be summarized as a QoE metric to
evaluate the performance. Thus, achieving a high QoE score
for video streaming has become a major challenge for ABR
algorithms.

To overcome this challenge, most traditional ABR algo-
rithms leverage time-series prediction (throughput-based) or



automation control method (buffer-based) to make decisions
for the next chunk. Moreover, [6] suggests that traditional
fixed control rules methods require careful tuning and will
achieve bad performances in the circumstance which is differ-
ent from the assumption. As a result, traditional ABR algo-
rithms perform well in pre-assumption and specific network
conditions but hard to keep its performance in various net-
work environments.

C. TIYUNTSONG’S DETAILS

C.1. Architecture and Implementation Details

We use TensorFlow [21] to implement Tiyuntsong6. As
demonstrated in Figure 8, Tiyuntsong is composed of five
neural network architectures as follows.
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Fig. 8. Tiyuntsong’s network architecture.

Dual network: We set past sequence length k = 10. Fea-
tures are extracted from the input state via a feature extraction
layer. For each feature in the input state, it’s passed through
a conv-1d layer with 64 filters and the kernel size of 1 × 3.
Meanwhile, we use ReLU function as the activation function
after each layer. Finally, the feature maps are concatenated as
a tensor.

Policy network & Value network: Both policy network
and value network are performed behind the Dual network.
We use a fully connected layer with 64 neurons and active
function ReLU to represent them. The output of each network
is n-dim vector and a single scalar respectively. In this work,

6[Online]Available: https://github.com/anonymous

we set γ = 0.6, β = 0.01, the learning rate for policy network
α0 = 10−4, and the learning rate for value network αv =
10−3. In this experiment, we use Adam optimizer [22] with
default parameters to optimize these neural networks.

Generative network & Discriminator network: Like
previous work, the generative network and discriminator are
composed of fully connected layer FC and batch normaliza-
tion layer BN. The generative network architecture is de-
scribed as FC1

64 → BN1 → FC2
32 → BN2 → FC3

16, and the
discriminator network is listed as FC1

64 → BN1 → FC2
32 →

BN2 → FC3
1. Meanwhile, we use Leaky ReLU as the active

function and set learning rate for the generative network and
discriminator network αG = αD = 10−4, hidden feature
size sizeht = 16. Referring to the recommendations in LS-
GAN [14], we use RMSProp optimizer [23] to update their
gradients.

C.2. Tiyuntsong’s Training Procedure

See details in Algorithm 1.

Algorithm 1 Tiyuntsong’s Overall Training Procedure
Require: The ABR environment Env to measure total bi-

trate, total rebuffer time, and total bitrate change with
given video samples V and network traces T; Two
agents with GAN Enhance Module {A0;G0,D0} and
{A1;G1,D1}; A rule for estimating reward Rule;.

1: procedure TRAINING(Env,T,V,A0,A1)
2: Initialize the parameters θ of θA0

and θA1
with ran-

dom weights respectively.
3: repeat . Epoch← Epoch+ 1
4: Sample trace,video from (T,V);
5: for (t, v) ∈ (trace,video) do
6: (s0, a0)← Env(A0, t, v);
7: (s1, a1)← Env(A1, t, v);
8: end for
9: Compute reward R ∈ {r0, r1} ← Rule(si, ai);

10: Estimate winning percentage w ∈ {w0, w1} from
R;

11: for i ∈ {0, 1} do
12: Get winning samples Aiw ;
13: Update Di and Gi with (1) and (2) using

(si, ai, ri,Aiw );
14: Update policy with (4) and (5) using

(si, ai, ri, wi);
15: end for
16: until Converged
17: end procedure

C.3. Tiyuntsong meets Parallel Training

During the training process, we observe that the training
progress is inefficient while using a single process. In-



Architecture Elo Timespan(it/s)

FC 1033 1.28
LSTM 1057 0.77

2D-CNN 1040 1.16
1D-CNN 1094 1.04

Constrained 977 -
Throughput-Rule 1023 -

Table 3. Comparing performance (Elo ratings) of Tiyuntsong
with different neural network architectures including Fully
Connected, 2D-CNN, 1D-CNN and LSTM. Results are eval-
uated under same network traces and video description in 50
steps.

spired by the multi-agent training method [24], we modify
Tiyuntsong’s training in the single agent as training in multi-
agents. Multi-agents training consists of two parts, a cen-
tral agent and a group of forwarding propagation agents. The
forward propagation agents only decide with both policy and
critic via state inputs and neural network model received by
the central agent for each step; then it sends the n-dim vector
containing {state, action, reward, gan} to the central agent.
The central agent uses the actor-critic algorithm to compute
gradient and then updates its neural network model. Finally,
the central agent pushes the updated network parameters to
each forward propagation agent. Note that this can happen
asynchronously among all agents, for instance, there is no
locking between agents. By default, Tiyuntsong with multiple
training uses 12 forward propagation agents and one central
agent;

D. ADDITIONAL EVALUATIONS

Instead of original paper, We still evaluate Tiyuntsong under
various neural network architectures. Our results answer the
questions: How long will Tiyuntsong converge? What’s the
best neural network architecture for Tiyuntsong?

D.1. Tiyuntsong’s Training Time

Tiyuntsong trains itself via endless competition, so the longer
Tiyuntsong trains, the better it performs. In this paper, we
stop training Tiyuntsong on i7-4790k CPU in 4 cores till its
Elo-rating exceeds previous approaches. (Unlike traditional
CV work, AI in networking requires a small model which can
obtain high performance in low costs, so training on CPU is
feasible). The training time lasts about 1.5 days. We observe
that Tiyuntsong outperforms previously proposed approaches
in 40mins, 2hrs, 13hrs, and 33hrs respectively. We will focus
on accelerating the training process as is described in future
work.
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Fig. 9. Tiyuntsong’s network architecture.

D.2. Tiyuntsong with Different Architectures

In this experiment, we compare the Dual network architec-
ture from Tiyuntsong to the following network architectures
which collectively represent the architecture candidates. The
network architecture candidates are simply listed as follows:

• Fully Connected
FC1

64 → FC2
128 → FC3

64

• LSTM (long-short-term-memory)
LSTM1

64 → LSTM2
64 → SELF-ATTENTION1

64

• 2D-CNN
CONV2D1

64 → MAXPOOL1
2 → CONV2D2

64 →
MAXPOOL2

2 → FC1
64

• 1D-CNN∗

CONV1D1···6
64 → MERGE1 → FC1

64

We train and test under Sabre environment with the same
network traces and video descriptions. In this experiment, we
set γ = 0.99, β = 0.02, step = 50 for only testing their per-
formance instead of convergence. We report the result in Fig-
ure 9 and Table 3, where 1D-CNN is the Tiyuntsong’s Dual
network architecture. The obtained results indicate that 1D-
CNN neural network architecture succeeds in improving the
Elo ratings, with improvements in average Elo ratings of 37
- 61. We also observe that there is no obvious difference be-
tween these architectures in terms of operational efficiency.

E. DISCUSSIONS

E.1. Traditional QoE functions and Rules

As demonstrated in Figure 10, we find that more than one
rule can be generalized to represent the same QoE formula-
tion, vice versa. For example, during the design of method,
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Fig. 10. Traditional RL method’s Trap: A QoE metric can
evaluate several ABR algorithms, but the generated algorithm
may deviate from the basic rules of the ABR if it blindly im-
proves QoE score.

fixed-rules, such as throughput-based and buffer-based, use
handcraft features or network presumptions to implement the
model without considering how to take advantage of evalu-
ation metrics (QoE formulation). Then, the given QoE for-
mulation is only used to evaluate the performance of each al-
gorithm. Furthermore, mixed-based and RL-based schemes,
i.e., MPC [4] and Pensieve [6] adopts the QoE formulation
to guide its algorithm for achieving higher QoE score. How-
ever, recent research [?] exposes that there still exists a plenty
of room for improving QoE metrics and many situations (e.g.,
some network conditions and videos) cannot be evaluated cor-
rectly via current QoE metrics due to the lack of features, as
the RL-based scheme still tries to optimize the QoE score with
the false guidance, finally results in failure of real-world per-
formances. As a result, no matter how precisely and carefully
the QoE function tunes, traditional RL-methods cannot ex-
actly provide a result that the users desire.

Intuitively, the critical idea of Rule is to tackle the prob-
lem that the reward function fails to depict. For example,
ABR tasks and self-driving car tasks. The fundamental fac-
tor of Rule is: Given two answers (action) from one ques-
tions (state), can you figure out which one is better to an-
swer? In this paper, we prove that using self-play reinforce-
ment learning will learn the strategy by itself if you can tell
the agent who is better.

E.2. The Diversity of Network Traces

The real world network is composed of several network con-
ditions such as 3G/HSPDA, 4G, Wired and WiFi. It’s obvi-
ous that each of them has different features, and we try to
train a generalized model which can cover all the network
status. Thus, we collect a corpus of network traces by com-
bining several public datasets. Meanwhile, the diversity of the
length of network traces is still challenging. On the one hand,
each dataset is generated in different durations and granular-
ity. For example, each of FCC dataset we used logs the aver-
age throughput about 100 seconds, and at a 5-second granu-
larity (the log is sized 20); Each of synthetic network traces

is logged as the average throughput about 2000 seconds. On
the other hand, we balance the data distribution by control-
ling the amount of various network traces in the data pool
during the training process. Additional information will be
open-sourced later on.
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