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Abstract—Off-the-shelf buffer-based approaches leverage a
simple yet effective buffer-bound to control the adaptive bi-
trate (ABR) streaming system. Nevertheless, such approaches
in standard parameters fail to always provide high quality of
experience (QoE) video streaming services under all considered
network conditions. Meanwhile, state-of-the-art learning-based
ABR approach Pensieve outperforms existing schemes but is
impractical to deploy. Therefore, how to harmoniously fuse the
buffer-based and learning-based approach has become a key
challenge for further enhancing ABR methods. In this paper,
we propose Stick, an ABR algorithm that fuses the deep learning
method and traditional buffer-based method. Stick utilizes the
deep reinforcement learning (DRL) method to train the neural
network, which outputs the buffer-bound to control the buffer-
based approach for maximizing the QoE metric with different
parameters. Trace-driven emulation illustrates that Stick betters
Pensieve by 3.5% - 9.41% with an overhead reduction of
88%. Moreover, aiming to further reduce the computational
costs while preserving the performances, we propose Trigger,
a light-weighted neural network that determines whether the
buffer-bound should be adjusted. Experimental results show that
Stick+Trigger rivals or outperforms existing schemes in average
QoE by 1.7%-28%, and significantly reduces the Stick’s compu-
tational overhead by 24%-61%. Meanwhile, we show that Trigger
also helps other ABR schemes mitigate the overhead. Extensive
results on real-world evaluation demonstrate the superiority of
Stick over existing state-of-the-art approaches.

I. INTRODUCTION

Internet video streaming and downloads are taking a large
share of network bandwidth and will grow to more than 82%
of all the traffic on consumer Internet by 2022 [1]. Due to
the fluctuation of network conditions and diversity of video
contents, many adaptive bitrate (ABR) algorithms ([2], [3], [4],
[5]) have been proposed to provide video streaming services
with high quality of experiences (QoE). Traditional buffer-
based ABR algorithms (e.g., BBA [3] and BOLA [6]) select
the bitrate of the future video chunk with the fixed buffer-
bound or parameters, which not only fail to guarantee the per-
formance under various network conditions but also struggle
to meet the different QoE demands (§II). On the contrary,
learning-based ABR scheme Pensieve [5] receives state-of-
the-art performances via deep reinforcement learning (DRL)
method [7], [8]. Specifically, Pensieve is deployed on the
server to avoid high computational costs on the client-side.
However, in practice, most ABR algorithms are executed in

the front-end to avert the extra latency connecting to the back-
end [9], [10]. Thus, such ABR policy frameworks ([5], [11])
are theoretically effective but impractical [12].

In light of these concerns, we observe that these two
methods are complementary to each other: we can adopt deep
learning to enhance the buffer-based approaches, and in turn,
leverage buffer-bound to decrease the computational overhead
of learning-based approaches, as the buffer-bound carries
more redundant information than a single bitrate action. As a
result, such methods can make good but impractical schemes
more practical. Hence, this paper is motivated by a simple
yet impossible quest: can we use deep learning method to
dynamically adjust the buffer-based approach, aiming to make
the proposed scheme perform well under all the considered
network conditions, various QoE objectives, and especially,
with lower extra costs? (§II-A)

Based on this question, we list several challenges that
attempt to solve them without using deep learning. Unfor-
tunately, despite the abundance of recently proposed ap-
proaches [13], [14], recent ABR methods can hardly tackle
all of the above challenges due to the respective reasons. To
this end, we ask if the deep learning could provide the answer
that differs from previous methods (§II-B).

In this paper, we propose Stick, a novel ABR scheme that
fuses the traditional buffer-based and deep learning methods.
Unlike traditional buffer-based approaches, Stick passes sev-
eral underlying metrics, including network status, video fea-
tures, and QoE parameters into the input(§III-A1). Meanwhile,
we take a continuous scalar, represented as a buffer-bound, as
the Stick’s output. Considering the continuous action spaces,
we adopt deep deterministic policy gradient (DDPG) [15], a
continuous DRL method, to train the model from scratch.
In detail, first, Stick outputs the following buffer-bound w.r.t
the current states, which includes network status and QoE
parameters on demand. Next, the buffer-bound is converted to
a chunk map via a linear function. Finally, the client selects the
next chunk’s bitrate according to the following chunk map and
current buffer occupancy. Stick learns the policy by interacting
with the ABR environment without any presumptions. Thus, it
generalizes a neural network (NN) model, which can achieve
high QoE performances under different QoE metrics.

Besides, aiming to reduce the Stick’s computational costs



(a) The principle of BBA (b) BBA in different param. (c) BOLA in different param. (d) QoE: µ = 0.5, τ = 0.5 (e) QoE: µ = 4.3, τ = 1

Fig. 1. Comparing the performance of BBA, BOLA, and Pensieve with different parameter settings and QoE metrics (§IV-A4).

effectively, we further propose Trigger, a lighted-weighted
NN model that activates Stick to update the buffer-bound
only if necessary (§III-B). Specifically, Trigger takes past
throughput observed, current buffer size and previous buffer-
bound as the input. We employ imitation learning [16], a high-
efficiency learning-based method, to train the Trigger based on
the expert actions. To overcome the unbiased distribution of
data samples, we utilize prioritized experience replay to store
expert policies with the following distributions. In addition,
we also propose a method that enables other ABR schemes
able to use Trigger to reduce the overhead as well.

In the rest of this paper, we set up a trace-driven eval-
uation and a real-world analysis to validate Stick’s perfor-
mance (§IV). First, we describe the correlations between the
number of Stick’s outputs and their overall performance. Next,
the comparison of Stick and existing buffer-based schemes
shows that Stick surpasses recent work by 39.68% to 44.26%
on average QoE. We then compare the performance of Stick
to existing buffer-based and learning-based ABR schemes.
Moreover, the obtained results indicate that Stick with a
tiny model size outperforms Pensieve, with the improvements
on average QoE of 3.5% to 9.41% under all considered
network conditions. Meanwhile, it saves 88% of the cost
compared to that of Pensieve. Besides, results also indicate
that Stick outperforms existing model-based schemes, with
the improvements on average QoE of 10.87% to 30.77%.
The additional experiment illustrates that Trigger reduces the
Stick’s computational costs by 61% and, in the meanwhile,
slightly rivals or improves average QoE by 1.7%-4.17% com-
pared with Pensieve. Moreover, we also prove that Trigger can
also improve other traditional ABR algorithms by reducing
the computational overhead by 24% to 40%. Finally, we
implement Stick and evaluate its performances under real-
world environments, as expected, yielding solid and reliable
results. To sum up, we summarize the contributions as follows:
1) To the best of our knowledge, we are the first to ponder

the correlation between the buffer-based and learning-based
approaches. Further, we fuse them to enhance each other.

2) We propose Stick, an ABR scheme which is the fusion of
deep learning and heuristic methods. Results indicate that
Stick can achieve higher performances with smaller model
sizes compared with existing ABR schemes.

3) We present Trigger to answer how to use a light-weighted
model to accomplish the cost-reducing task. Results also
illustrate that Trigger can significantly reduce the Stick’s
computational costs by 61%.

II. BACKGROUND AND MOTIVATION

A. Buffer-based and Learning-based ABR Approaches

ABR algorithm aims to keep video streaming services with
high QoE by dynamically picking the next chunk with different
bitrates [17] . Buffer-based approach (BBA) [3] is one of ABR
algorithms that picks the next chunks’ bitrates w.r.t only the
current buffer occupancy. In particular, BBA uses throughput
estimation in the startup-state to overcome the highly variable
throughput. While in the steady-state, BBA uses the fixed
buffer-bound {Bmin, Bmax} to construct chunk map, and the
chunk map is the function for mapping the buffer occupancy to
the bitrate. In this work, as suggested by the original paper [3],
we consider a piece-wise linear function as the chunk map to
increase the bitrate between lowest bitrate Rmin and highest
bitrate Rmax of the chunk (see in Figure 1(a)). Notice that the
function can be defined as any methods [6]. BBA then selects
the future chunks’ bitrate based on the client’s buffer occu-
pancy and chunk map. In general, BBA is simple yet effective,
but fails to perform well in different QoE metrics (Figure 1(d)
and 1(e)) and various network conditions (§IV-D). The reason
is that the parameters of BBA should be carefully tuned to fit
the environment (Figure 1(b) and 1(c)). In contrast, learning-
based ABR scheme Pensieve [5] obtains outstanding results
via learning from scratch, as it is deployed on the server-
side to eliminate the heavy computational cost on the client-
side. However, the framework is impractical in practice since
most ABRs are light-weighted and often performed on the
front-end rather than back-end [3]. Besides, experiments (See
Figure 1(d) and 1(e)) show that Pensieve still fails to fit any
QoE metrics by using default NN model.

B. Key Ideas and Challenges

Having considered these two methods above, we realize that
the learning-based method can assist the buffer-based method
to improve the overall performance effectively. Meanwhile, the
buffer-based method can also reduce the NN model size and
the computational cost because the buffer-bound is flexible and
contains redundant information, and it is more tolerant than
outputting as a bitrate probability vector. Thus, we address
several key challenges.
• How to tune the buffer-bound to fit all considered network

conditions? Ideally, several attempts have been made
to tackle the problem from different perspectives. E.g.,
BOLA [6] theoretically tunes the buffer-bound to keep the
system stable, Auto-tuning methods [11], [18] tune param-
eters w.r.t a big lookup table or a trained NN. However,



recent approaches either suffer from careful tuning [5] or
neglect the storage and computational overhead (§V).
. Our solution. Motivated by the recent success of deep-
learning method [19], [5], we adopt deep reinforcement
learning (DRL) method to generalize strategies without any
presumptions, aiming to adjust the buffer-bound to achieve
high QoE performances dynamically. On the other hand, the
buffer-bound method has better generalization, which helps
NN effectively reduce the model size.

• How to determine the state-space and action space for
the NN model? Recent buffer-based [13] methods consider
only the buffer occupancy rather than throughput mea-
surements. What’s more, recent auto-tuning method [11]
donate throughput features as the input. Ideally, a good ABR
method relies on not only the accurate throughput prediction
but also other network and video features[20], [4], such as
download time and next chunks’ sizes. Such metrics are also
critical features for ABR algorithms [5].
. Our solution. In our work, we consider the state space
into three parts, i.e., network metrics and video content
features as well as playback features (§III-A1). Besides,
experimental results illustrate that Stick (§IV-B) can control
the buffer-bound with one value B rather two values [3].

• How to propose an ABR method which can perform well
under the QoE metrics with different sets of parame-
ters? As demonstrated in Figure 1(d) and Figure 1(e), we
find that neither model-based nor learning-based approach
is able to handle different types of QoE metrics since
these approaches are often optimized towards one QoE
function [5], [6].
. Our solution. We donate the QoE parameters as the goal
and append it into the NN’s input (§III-A1). During the
training, we randomly initialize the parameters from the
range of 0.0 to 10.0 so as to let the NN realize the correlation
between the given QoE parameter and the feedback reward.

• How to reduce the computational cost while guaranteeing
the overall performance? Increased overhead will neglect
the increased overall performance if it is significant. E.g.,
Extensive experiments show that Stick can improve the QoE
up to 15.74% compared with the state-of-art ABR approach
Pensieve while increasing 45x in terms of the Pensieve’s
computational cost (§IV-E).
. Our solution. We implement a light-weighted NN model,
placed in front of the DRL-based NN, aiming to determine
whether it’s possible to provide the BBA with a new set
of buffer-bound (§III-B). Specifically, we train the NN via
imitating the expert value for each step.
In summary, exploring the aforementioned challenges, how-

ever, requires not only achieving outperformed performances
under different QoE metrics but also reducing the computa-
tional cost as much as possible.

III. SYSTEM OVERVIEW

In this section, motivated by the key challenges above, we
propose Stick, a ABR approach which is the fusion of buffer-
based and learning-based scheme. The Stick’s system work-
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Fig. 2. An overview of Stick.

flow is illustrated in Figure 2. As shown, the system is mainly
composed of i) basic Stick, which leverages DRL to output
the buffer-bound for controlling the traditional buffer-based
approach (§III-A), and ii) Trigger, which adopts imitation
learning to train a light-weighted NN-based change detector
for reducing the computational cost (§III-B).

A. Stick Mechanism

This subsection describes Stick’s design (Figure 3), struc-
tured according to how it address the three aforementioned
challenges: How to design Stick and how to model the state,
action, and reward? (§III-A1); How to train Stick? (§III-A2);
How to implement Stick? (§III-A3).

1) Design: We consider the lifetime of the ABR process as
a Markov Decision Process (MDP), and we formulate Stick
via state, action, and reward.
• State. Stick’s learning agent takes the input state of time-

slot t st = {T, d, q, r, b, S, g} into NN, where T means
the past throughput measured by client for past k sequence,
d represents the download time for past k sequence, q is
the previous video bitrate selected; r is the video playback
time remaining; b is client’s current buffer occupancy; S is
a vector that represents the video sizes of the next video
chunk; g is the goal represented by two QoE parameters
µ, τ . Details are elaborate in §IV-A4.

• Action. Recall that we aim to control the continuous buffer-
bound B rather than directly select discrete bitrates. Thus,
our action space is a single scalar which represents the
suitable buffer-bound B ∈ [0,Buffermax] for the next chunk.

• Reward. We use typical linear-based QoE metric (§IV-A4)
with different parameters g to implement the reward func-
tion.
2) Training Methodology: We leverage DDPG, an algo-

rithm [15] that uses an actor-critic approach via deterministic
policy gradient (DPG) [21] to train our model. DPG is
composed of an actor network and a critic network. The actor
network is updated using Eq.1.

∆θµJ ≈ Est pβ [∆Q(s, a|θQ)|s=st,a=µ(st)∆θµ(s|θµ)|s=st ]
(1)

Here actor network µ(s|θµ) specifies the deterministic pol-
icy via a given state, and the critic network Q(s|a) is then
updated via Bellman equation (Eq.2).

Qπ(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))Qπ(s′). (2)



State St

qt

bt

Past bitrate selected

Buffer Occupancy

St-k+1 St-k+2 St-1 St…
Next Chunk Size

rtChunk  Remaining

Policy 
πθ(St,at)

Value 
vπθ(St)

Tt-k+1 Tt-k+2 Tt-1 Tt

Past throughput

Conv-1d

dt-k+1 dt-k+2 dt-1 dt…
Past Download Time

…

τQoE Params µ

Conv-1d

FC

FC

FC

FC

FC

atAcion FCAction At

Fig. 3. Stick’s NN Architecture Overview. We leverage DDPG to train Stick.

Unlike directly updating the weights of networks, DDPG
algorithm clones a copy of the actor network Q′(s, a|θQ′)
and critic network µ′(s|θ(θ′)) to perform target updates. The
weights of the networks are updated via slowly matching the
learned network via θ′ = τθ + (1 − τ)θ′, where τ = 0.001.
The target network is trained slowly for making the network
more stable. Besides that, we also leverage the exploration
policy to sample from a noise process (Eq.3), where the noise
process is chosen to suit the environment. In this paper, we
set exploration rate σ = 10 and exploration decay α = 10−5.

µ′(st) = µ(st|θµt ) +N. (3)

3) Implementation: We use TFlearn [22] to implement the
NN, and leverage TensorFlow [23] to construct the training
process. Specifically, we set past sequence length k = 8.
For each feature in the input state, it passes through a conv-
1d layer with 32 filters and the kernel size of 4. Finally,
the feature maps are concatenated as a tensor. The output
of each network is a value in (0, Bmax) and single scalar
respectively. We set Bmax = 60 as suggested by [5], [24],
γ = 0.99, actor network’s learning rate α0 = 10−6, and the
critic network’s learning rate αv = 10−4. In addition, we use
Adam optimizer [25] to optimize these NNs.

B. Trigger Design

Considering reducing the computational cost while pre-
serving the overall performances, we propose Trigger, which
adopts a light-weighted NN model to determine whether it’s
necessary to activate Stick to update the new set of buffer-
bound or not. This section details the design process of
Trigger, including its inputs and outputs, training methodology,
sample pool module, and implementations.

1) Useless Operation: It’s quite apparent that the client
will obtain highest QoE if it continuously changes the newer
buffer-bound from the Stick. However, we find that there
exists a specific computation-wasted situation, that is, when
the bitrate selected from the newer buffer-bound is equivalent
to the one selected from the past buffer-bound. We treat this

form of action as useless operation. As shown in Figure 4,
we evaluate the distribution of useless operation over different
network traces. Experimental results illustrate that most of the
network traces require only 30% to 40% of average buffer-
bound change times. To this end, our key idea for Trigger is
to leverage NN model to learn whether the states require the
useless operation or not.

2) Inputs and Outputs: Recent work [11] has claimed that
the network status could be represented by measuring the
mean and variance of throughput. However, we find that past
buffer occupancy is also a critical feature which can demystify
the underlying correlations between network status and video
chunk sizes. Thus, we use past network throughput observed,
the buffer size and current buffer-bound to represent Trigger’s
inputs. Moreover, we take a two-dims vector into Trigger’s
output, representing the probabilities of Stick keeping or
changing the buffer-bound.

3) Training Methodology: We use imitation learning
method to train the Trigger’s NN. Imitation learning method
reproduces desired behavior according to expert demonstra-
tions [16]. The overall training procedure is described in
Alg. 1. Trigger’s workflow consists of three parts:

• Rolling-out the trajectory A = {a0, a1, . . . , at} with the given
sequence S = {s0, s1, . . . , st};

• Offline validating ai ∈ A is useless operation and generating
a sequence represented as ground truth Y = {y0, y1, . . . , yt},
where yi = 1 if it belongs to the useful operation, vice versa;

• Updating the Trigger’s gradient via behaviour cloning [26] for
each step t. In this paper, we use cross entropy error to estimate
the loss between expert values and Trigger’s outputs.

Algorithm 1 Trigger Overall Training Procedure
Require: Trained Stick model: Stick; Trigger model π.

1: Sample Training Batch B = {}
2: procedure TRAINING
3: Initialize π.
4: Get State ABR stateSt, Trigger state st.
5: repeat
6: Perform at according to policy π(at|st; θ)
7: if at is not useless operation then
8: Buffer-bound At = Stick(St).
9: else

10: At = At−1

11: Estimate next chunk’s bitrate {Qt, Q̂t} w.r.t buffer occu-
pancy bt and two actions {At, Ât};

12: Compute expert answer yt = 1Qt=Q̂t
;

13: B ← B
⋃
{s, y} in Prioritized Experience Replay.

14: Update network via cross entropy loss;
15: Get next ABR state St+1 and Trigger State st+1;
16: t← t+ 1;
17: until Converged

4) Prioritized Experience Replay: Since then, we still
have not discussed the distribution of samples. Recent work
assumes that data distribution is balanced, which neglects
underlying prediction bias. Unfortunately, we observe that
there exists a serious imbalance distribution on our Trigger’s
samples. As illustrated in Figure 4, the distribution of each
action is unbalanced, where most network conditions achieve



Fig. 4. We test the useless operation rate over different network traces
including FCC, HSDPA, and Oboe. Results are shown with CDF distributions.
Besides, we also evaluate the useless operation rate on the entire video
Envivodash3 [27]. Results are collected under various network conditions.

Fig. 5. The principle of how Trigger helps other ABRs. The black slash
created by the intersection of the magenta line (buffer-bound) and Rmax and
the origin point is allowed to pass as many gray lines (past decisions) as
possible. Note that the black slash must pass the red line (current decision)
at the same time.

the useless operation rate about 83% rather than about 50%.
What’s more, we find that the probability of useless operation
on each chunk is almost equal, which means, the client should
use Trigger during the entire session. Hence, we leverage
prioritized experience replay[28], [29] to enhance the Trigger’s
performance.

5) Implementation: Trigger takes the past sequence length
k = 10 into the NN. For each feature in the input state, it
passes through a conv-1d layer with 32 filters and the kernel
size of 3. Next, we use a fully connected layer with 32 neurons.
The Trigger’s output is a 2-dims vector with softmax function.
We set learning rate α = 10−4.

6) Trigger with other ABR schemes: Besides, Trigger can
also help other ABR schemes, i.e., Rate-based [2], MPC [4]
and Pensieve [5], reduce the computational cost. The key
idea is the buffer-bound B only needs to override the bitrate
selection Rt for chunk t. The function of mapping Rt to B
is allowed to design in any methods, e.g., a simple linear
method (Eq.4). We, therefore, consider a fundamental strategy:
keep the past chunks’ bitrate selected {r0, . . . , rt−1} as much
as possible. To encourage the bound to preserve newer actions,
we leverage the discounted factor γ to degrade the value of
past sequences. Details are listed in Eq. 4,

max
B

V =
t∑

i=0

γt−i
1{B} (4)

s.t. B ∈ [
bt

Rt + 1
Rmax,

bt
Rt
Rmax] (5)

.

Here t is the sequence length, Rmax is the maximum bitrate
of next chunks, bt represents current buffer size on chunk t,
Rt reflects the bitrate selected by model-based approaches at
chunk t. In this paper, we set the hyper-parameter γ = 0.99.
Figure 5 illustrate the fundamental principle: the method aims
to generate a line which can across previous decisions as much
as possible.

IV. EVALUATION

In this section, we evaluate Stick and Trigger under var-
ious network conditions and compare them with previously
proposed ABR approaches.

A. Implementation

1) Experimental Testbed Setup.: To better validate ABRs,
out work is composed of two experiments: trace-driven offline
emulation and real-world experiment.
. Trace-driven offline emulation. In the past few years,

there are many issues for the researchers to implement a
faithful simulator to emulate the ABR process in the of-
fline environment, e.g., TCP-slow start [3], which causes
the failure of bandwidth estimation; lack of various real-
world network traces, which limits the effect of the offline
simulator. Fortunately, several faithful attempts [5], [14], [11]
have been proposed make validation process easier. Thus we
utilize Pensieve’s trace-driven emulation environment, includ-
ing Mahimahi [30] and Park [31], to evaluate Stick.
. Real-world Deployment. We also establish a full-system

implementation, which consists of a video player, an ABR
server and an HTTP content server. On the server-side, we
deploy an HTTP Server with TCP-slow-start restart disabled
as suggested by Pensieve [5]. On the client-side, we modify
Dash.js [27] to implement our video player client and the
Trigger module. Further, we place Stick as a service on the
client locally.

2) Video Datasets.: To better enhance the Stick’s gen-
eralization performance, we train Stick via a video dataset
provided by Huang et al. [32]. The dataset 86 complete
videos, with 394,551 video chunks. In details, the video is
encoded by the H.264 codec at video bitrates in the range of
{0.3, 0.75, 1.2, 1.85, 2.85, 4.3} Mbps, where each chunk is
4 seconds. Meanwhile, for validating Stick, we use Envivio-
Dash3 [33], which is commonly used in recent work [5], [24],
[11]. Furthermore, we also pick an additional video set from
video dataset [32] for testing. The total length of the video is
212 seconds, and the video is divided into 53 chunks.

3) Network trace datasets.: We use a large corpus of
network trace dataset (i.e., Kwai dataset) provided by
Kuaishou [34]. The dataset is collected in the number of
865,507 traces from 9,941 users, totally 46 days from var-
ious network conditions, including wired, WiFi and cellular
network, and so forth. Specifically, we randomly pick the
10% of the dataset and divide them into two parts, 80% of
the database for training and 20% for testing. What’s more,
we also leverage a corpus of public datasets for validating
Stick. Detailing the validation set, that includes: HSDPA [35]:



a well-known 3G/HSDPA network trace dataset (228 traces,
1s granularity); FCC [36]: a broadband dataset (486 traces, 1s
granularity); Oboe [11] (428 traces, 1-5s granularity): a trace
dataset collected from vaious network conditions.

4) QoE Metrics.: In this paper, followed by recent work [4],
[5], [24], [11], we use the general QoE metric QoElin, the
linear mapping formula which was used by MPC [4], to
evaluate Stick. The metric is defined as:

QoE =

N∑
n=1

q(Rn)− µ
N∑
n=1

Tn − τ
N−1∑
n=1

|q(Rn+1)− q(Rn)| ,

(6)
where N is the total number of chunks during the session,
Rn represents the each chunk’s video bitrate, Tn reflects the
rebuffering time for each chunk n, q(Rn) is a function that
maps the bitrate Rn to the video quality perceived by the user.
µ and τ is the coefficient which control the priority of the
given metric. Followed by recent work [5], [11], [24], we set
q(Rn) = Rn, µ = 4.3 and τ = 1.0 as the basic QoE baselines.
Moreover, we also compare Stick with Different QoE metrics
in §IV-F.

5) Training Time.: We train Stick on a desktop with i7-
8700k CPU in 12 cores, 32GB RAM and a GTX1080Ti GPU
card. Training process lasted approximate 40000 steps, or
almost 3 hours to achieve a stable result. We also train Trigger
on the same settings and the training time lasts about 2 hours.

6) ABR Baselines.: In this paper, we select several repre-
sentational ABR algorithms from various type of fundamental
principles:
1) Rate-based [2]: uses harmonic mean of past five through-

put measured as future bandwidth. It then selects the high-
est bitrate but lower than the future bandwidth estimated.

2) Buffer-based [3]: dynamically chooses next chunk bitrate
according to the buffer occupancy. In this paper, we set the
buffer bound B = 5, 10 as suggested by the authors.

3) BOLA [6]: turns the ABR problem into a utility maximiza-
tion problem and solve it by using the Lyapunov function.
It’s a buffer-based approach. We use BOLA provided by
the authors [14].

4) HYB [11]: predicts the throughput only over a horizon
of 1 future chunk and selects the next bitrate using the
heuristic method. We set discounted buffer factor β = 0.25
as mentioned by the authors.

5) MPC [4]: maximizes the QoE objectives by jointly con-
sidered the buffer occupancy and throughput predictions.
We implement RobustMPC by ourselves.

6) Pensieve [5]: utilize DRL to select bitrate for next video
chunks. Pensieve takes the former network status as states
and reinforces itself through the interaction with the faithful
offline simulator. We use the pre-trained Pensieve model
provided by the authors.

B. Stick with Different Outputs

In this part, for proving the effectiveness of Stick, we design
an experiment to figure out how necessary the Stick with
two sticks is. During the training process, we compare the

(a) Learning curves

ABRs Size Avg. QoE
BBA - 1.90

Pensieve 128 2.12
Stick@2 64 2.14
Stick@1 32 2.20

(b) Statistics Details

Fig. 6. Comparing the performance of Stick using 1 parameters with Stick
using 2 parameters. Results are evaluated on the oboe network traces.

(a) Kwai Network Dataset

(b) HSDPA Network Dataset

Fig. 7. Comparing average QoE of Stick with BBA on the QoE metrics on
the HSDPA and Kwai network dataset.

average reward of Stick using two parameters. Results are
evaluated under the Oboe trace dataset every 100 training
steps. Experimental results are summarized as the normalized
average reward in Figure 6(a). As shown, although Stick with
two parameters converges faster than the one with a single
parameter, the performance of these two schemes has no
obvious difference. Moreover, details are listed in Figure 6(b),
and we find that the scheme using one parameter also betters
the other one with the improvements of average QoE on 2.8%.
As a result, we represent Stick with a single output as the
fundamental structure of the system.

C. Stick vs. Buffer-based Approach

In this experiment, we demonstrate that Stick, leveraging
deep learning method, performs better than the buffer-based
approaches. We use offline trace-driven emulation to evaluate
Stick, BOLA, and BBA under HSDPA and Kwai network
dataset. CDF distributions of proposed methods are shown
in Figure 7(a). The result indicates that Stick outperforms
existing buffer-based approach on the Kwai dataset, with the
improvements on average QoE of 9.63% in terms of BBA and
18.5% in terms of BOLA respectively. Besides, we find that
Stick improves the 95th percentile average QoE by 19.83%
compared with BBA. Further, Figure 7(a) also illustrates the
CDF of the improvement on QoE of Stick over buffer-based
approaches. As expected, we observe that Stick improves the
performance for 100% sessions on BBA, and almost 80% of



(a) Kwai network dataset.

(b) HSDPA network dataset.

Fig. 8. Comparing Stick with existing ABR approaches under different videos (§III-A3) and network traces (i.e., Kwai and HSDPA network datasets).
Results are illustrated with CDF distributions, QoE improvement curves and the comparison of several underlying metrics (§IV-A4).

sessions on BOLA. What’s more, Figure 7(b) compares Stick
with buffer-based approaches on the HSDPA dataset, and we
also illustrate that Stick improves 44.26% compared with BBA
and increases 25.93% in terms of BOLA.
D. Stick vs. Existing ABR schemes

In this experiment, we use trace-driven offline emula-
tion to compare the performance of Stick against sev-
eral existing ABR algorithms, including model-based ABR
schemes (i.e., Rate-based, HYB, and MPC) and learning-based
ABR scheme (i.e., Pensieve), over Kwai and HSDPA network
dataset. Specfically, we evalaute the proposed schemes with
different video traces as described in §IV-A2.
. Stick vs. Pensieve. Figure 8 illustrates the CDF of QoE
for Stick and Pensieve, and we find that Stick improves the
average QoE of 9.41% over Kwai dataset and 3.5% over
HSDPA dataset respectively. Note that Stick only utilize one-
quarter number of neurons that of Pensieve. Meanwhile, we
also analyze the CDF of the QoE percentage improvement for
Stick over Pensieve. Exterimental results indicates that Stick
performs better than Pensieve on 77% of the sessions. Fur-
thermore, we report the average performance of each scheme
with three underlying metrics. We can see that comparing the
metrics with Pensieve, Stick improves the average bitrate by
8.49%, decreases the average rebuffering time by 4.92%, and
slightly increases average bitrate change by 3.47%.
. Stick vs. Other Schemes. Figure 8 shows the CDF distribu-
tion of average QoE performances for each ABR algorithms
over different network traces. As expected, Stick outperforms
existing schemes, with the improvements on average QoE for
the entire session of 9.5% to 25.86%. Moreover, we also report
the utility from the average bitrate, rebuffering time as well as
switching bitrates. The obtained results indicate that compared
Stick to other schemes, Stick always achieve higher average
bitrate with lowest rebuffering and bitrate changes. Note that
Stick fails to obtain the highest bitrate among the candidates,
but results the highest average QoE. That means, Stick has

TABLE I
STICK DEEP DIVE: SWEEPING THE NUMBER OF CNN FILTERS AND

HIDDEN NEURONS FOR PENSIEVE’S NN MODEL.

N Pens. [5] 16 32 64 128 1024
Avg.QoE 2.12 1.97 2.20 2.18 2.22 2.24
Size(MB) 1.0 0.07 0.23 0.47 1.0 80.67
KFLOPs 298 16 37 99 296 13381

KFLOPs Per.(%) - 5 12 33 99 4494

generalized a strategies to fit the network environment rather
than blindly increase one of the underlying metrics. Same
conclusion are also demonstrated in Pensieve [5].

E. Stick Ablation Study

In this experiment, we investigate how Stick performs under
different hyper-parameters. We start by sweeping a range of
NN parameters to evaluate each performances, and we set N
in range {16, 32, 64, 128, 1024}, where N means the number
of filters in CNN layers and the number of neurons in fully
connected layers. Results are evaluated under the Oboe dataset.
. Stick Deep Dive. As demonstrated in Table I, we observe
that with the same NN architecture, Stick exceeds Pensieve
by using only 25% of Pensieve’s parameters, with the average
QoE improvements of 1.4%. Further, results also illustrated
that with the increase of model size, the performance of Stick
will consistently improve up to 5.66% compared to Pensieve.
Note that the Stick which is sized more than 1M will no longer
support to deploy on the client-side because it’s somewhat
huge for the cost on both computing and downloading.
. Stick Overhead. Meanwhile, we also compute the number
of floating-point operations (FLOPs) for each model [37], as
illustrated in Table I. We find that Stick saves 88% of the
computational cost compared to Pensieve, and such advantages
lasts up to Stick-128. In general, comparing the model size
of Stick with Pensieve, we believe that using the fusion of
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Fig. 9. We evaluate Trigger with Stick and other ABR schemes over different network traces including FCC, HSDPA and Oboe. Results are shown as
performance-cost plot. Besides, we also discuss the best architecture for Trigger.

(a) QoE: µ = 6, τ = 6 (b) QoE: µ = 0.5, τ = 0.5

Fig. 10. Comparing Stick with several ABR schemes, including BBA,
BOLA, RobustMPC and state-of-the-art learning-based approach Pensieve
over different QoE metrics. Results were collected on the HSDPA dataset.

domain knowledge and deep learning will significantly reduce
both computational and storage overhead.

F. Stick with Different QoE metrics

In this experiment, we only train Stick once and evaluate
it with different QoE parameters. It’s quite challenging since
both buffer-based [3], [6] and learning-based ABRs [38], [5]
seldom achieve the goal under various QoE. Results are shown
in Figure 10, and we observe that the performance of Stick
also surpasses that of recent ABR schemes under different
QoE parameters. In particular, Stick betters traditional buffer-
based scheme on average QoE of 45.8% in which QoE: µ =
6, τ = 6. Such positive results prove the effectiveness of taking
QoE parameters as the input (§III-A1).

G. Trigger Evaluation

In this part, we tried to demonstrate the importance of
Trigger for the Stick system. The result indicates that Trigger
works well not only on Stick but also on other ABR schemes.
We then figured out the best NN architecture for Trigger to
the best of our knowledge.
. Stick+Trigger Evaluation. We setup an experiment to better
understand how Trigger performs. In details, we evaluate
average QoE metrics and useless operations on Trigger+Stick
in the same model size. To better understand how does Trigger
help traditional ABR schemes reduce the computational cost,
we validate three representative algorithms, i.e., rate-based
approach, MPC, and Pensieve. Results are collected under
Oboe, FCC, and HSDPA network conditions. Figure 9(a)
illustrates, using Trigger will significantly reduce the overhead
of Stick, with the average cost decreases of 39.3% to 61.0%.

At the same time, it also improves the average QoE of 1.70%
to 4.17% compared with Pensieve. In particular, we observe
that Trigger even improves the overall QoE of traditional
heuristic approaches, i.e., rate-based approach and MPC, with
the improvements on average QoE of 9.3% to 12.3%. The
reason for this is that Trigger uses past buffer occupancy that
conventional rate-based approach neglects. Besides, Trigger
also helps MPC avoid switching bitrates frequently so as to
achieve higher QoE performances. As expected, the results
on Figure 9(b) and Figure 9(c) also illustrate the same point.
Especially, Trigger+Pensieve even works better than the orig-
inal Pensieve, by 2.6% to 3.4% on average QoE metric. The
reason is that Trigger further considers the correlation between
throughput and buffer occupancy from the global perspective
so that Pensieve can reduce the bitrate change by further
utilizing the buffer.
. Best NN architecture selection. To better understand
why Trigger performs well, we compare the NN architecture
from Trigger to the following network architectures which
collectively represent the architecture candidates. The network
architecture candidates are simply listed as follows:
1) Fully Connected: FC1

N → FC1
N/2 → FC2

N

2) LSTM: LSTM1
N → SELF-ATTENTION1

N [39]
3) 1D-CNN∗: CONV1D0···1

N ,FC1
N → MERGE1 → FC2

N .
∗ Trigger’s NN architecture.

Here N represents the counts of hidden units in a fully
connected layer or the channel number in the conv layer and
we set N = {8, 16, 32}. In this experiment, we train and
validate the following under same network traces and videos.
Results are demonstrated in Figure 9(d), and indicate that 1D-
CNN NN architecture succeeds in improving the capacity, with
increases in average QoE of 0.46% to 1.37% and decreases in
average costs of 1.0% to 28%. Through the experiment, We
also confirm that there is no obvious difference between these
architectures in terms of operational efficiency.

H. Stick in the Real-world

The final challenge of Stick is to meet the real world
network conditions. In this experiment, we evaluate Stick,
Stick+Trigger as well as Pensieve under several types of
network connections, and the detail of each link is listed as
follows:



Fig. 11. Comparing the average QoE of Stick with Pensieve under various
real-world network conditions.

1) A wired network link from Shanghai to Beijing, where
Round Trip Time (RTT)=36ms, packetloss¡2%. In order
to validate how Trigger works, we fixed the the server’s
bandwidth to 2Mbps.

2) A 4G/LTE network link from QingDao to Beijing, where
RTT=58ms, packet loss=3.2%.

3) An international network connection from Singapore to
Beijing, in which RTT=315ms, Loss≈8%.1.

Specifically, for each round, we randomly select a scheme
from the following candidates and summarize the bitrate
selected and rebuffering time for each chunk. Each link takes
about 2 hours, and 6 hours in total. Results are reported with
the average QoE of each session. As illustrated in Figure 11,
as expect, we find that Stick performs comparable or better
than Pensieve. Especially, Stick outperforms Pensieve on the
international link, with the improvements on average QoE of
4.38%. The reason is that Stick leverage a buffer-bound to
keep the ARB system, and the buffer-bound contains more re-
dundant network information as mentioned before (§II). Thus,
such scheme has the abilities to handle the high throughput but
high variance network conditions such as international link.
What’s more, we also observe that Trigger reduces the Stick’s
average computational cost by 42% to 76%. In particular,
Trigger saves almost 80% overhead on the wired network link.
Such positive result indicates that Trigger have learned the
strategies to avoid redundant decisions and perform well under
the non-stationary network. Note that wired network link with
fixed bandwidth are widely used in the real-world.

V. RELATED WORK

Recent ABR algorithms are mainly composed of three types,
i.e., model-based, learning-based, and auto tuning-based.
. Model-based Approaches. FESTIVE [2] estimates future
throughput via the harmonic mean of the throughput measured
for the past five chunk downloads. However, due to the lack
of throughput estimation method currently, these approaches
still result in poor ABR performance. Then, many approaches
are designed to select the appropriate high bitrate next video
chunk and avoid rebuffering events based on playback buffer
size observed. BBA [3] proposes a linear criterion threshold to
control the available playback buffer size. BOLA [6] turns the
ABR problem into a utility maximization problem and solve
it via the Lyapunov function. However, typically buffer-based

1In this experiment, we use TCP-BBR [40] as the basic TCP congestion
control algorithm. Notice that the packet loss metric is collected by Ping.

approach fails to tackle the long-term bandwidth fluctuation
problem [17]. Hence, mixed approaches [4] select bitrate for
next chunk by adjusting its throughput discount factor based
on past prediction errors and predicting its playback buffer
size. Nevertheless, these approaches require careful tuning
because they rely on parameters that are quite sensitive to net-
work conditions, resulting in poor performance in unexpected
network environments [5].
. Learning-based ABR Algorithms. Recently, several at-
tempts have been made to optimize ABR algorithm based on
reinforcement learning method due to the difficulty of tuning
mixed approaches for handling different network conditions.
D-DASH [38] uses Deep-Q-learning method to perform a
comprehensive evaluation based on state-of-the-art algorithms.
Tiyuntsong [41] optimizes itself towards a rule or a specific
reward via the competition with two agents under the same
network condition. Pensieve [5] utilizes DRL to learn an ABR
algorithm without any presumptions. Comyco [32] trains the
ABR policy via imitating expert trajectories, which can avoid
redundant exploration and make better use of the collected
samples. However, these approaches only focus on improving
the performance but seldom consider the overhead.
. Auto tuning-based ABR Algorithms. CS2P [42] assume
that throughput factors can be efficiently captured by Hidden-
Markov-Model (HMM), then they optimize the model on the
cloud with huge amounts of data. Oboe[11] attempts to place a
dictionary, which mapping the throughput status {µ, σ} to the
optimized traditional ABRs’ ([4], [6]) parameters, on the cloud
for assisting traditional algorithms to achieve higher perfor-
mances over different network conditions. Erudite [18] adopts
NN, trained by the Bayesian Optimization Algorithm, to con-
tinuously provide the controller with near-optimal parameters.
However, such schemes suffer from either huge computational
costs or large waste of storage space. Besides that, deploying
a lookup table on the client-side is also impractical [12].

VI. CONCLUSION

This work starts with an intuitive yet impossible idea: merge
the traditional buffer-based and learning-based ABR scheme
to implement a fusion approach, since we observe that those
two methods are complementary to each other. To that end, we
propose Stick, a novel ABR scheme which jointly improves
the performance and reduces the cost. Unlike previous ap-
proaches, Stick utilizes DRL to dynamically adjust the buffer-
bound, and controls the ABR algorithm w.r.t the current buffer-
bound. Results show that Stick outperforms existing schemes,
with the improvements of 9.41%-44.26%. Note that Stick
only uses 12% computational costs that of state-of-the-art
ABR scheme Pensieve. Meanwhile, we also propose a tiny
model named Trigger to further reduce the overhead while
guaranteeing the overall performance. Experimental results
illustrate that Trigger betters existing schemes and reduces
61% on computational costs. At the same time, Trigger also
helps traditional ABR algorithms reduce the overhead up to
40%. In conclusion, Stick is a feasible ABR framework which
can harmoniously fuse the buffer-based and learning-based.
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