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Abstract—Internet adaptive video streaming is a typical form
of video delivery that leverages adaptive bitrate (ABR) algo-
rithms to provide video services with high quality of experi-
ence (QoE) for various users in diverse and unique network
conditions. Such heterogeneous network environments, which
can be viewed as exogenous input processes, often lead to
the unstable performance of ABR algorithms. Unfortunately,
learning-based ABR algorithm which generated by state-of-
the-art reinforcement learning (RL) technologies achieves good
average performance but fails to perform well in all kinds of
network conditions.

In this work, considering the video playback process as
the Input-driven Markov Decision Process (IMDP), we propose
A2BR (Adaptation of ABR), a novel meta-RL ABR approach.
A2BR is mainly composed of an online stage and an offline stage.
It leverages meta-RL to learn an initial meta-policy with various
network conditions at the offline stage and makes decisions in
personalized network conditions at the online stage. At the same
time, we continually optimize the meta-policy to the tailor-made
ABR policy for varying the current network environment within
few shots. Moreover, in order to improve the learning efficiency,
we fully utilize domain knowledge for implementing a virtual
player to replay the previously experienced network.

Using trace-driven experiments on various scenarios including
different vehicles, users, network types, and heterogeneous user-
preferences, we show that A2BR outperforming recent ABR
approaches with rapidly adapting to the personalized QoE
metrics and specific network conditions. Testbed experimental
results also illustrate the superiority of A2BR in adapting to the
unseen environments.

I. INTRODUCTION

DUE to the rapid development of network services, video
streaming now stands for the predominant Internet

application, which is up almost 75% all traffic [1], [2].
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Especially, adaptive video streaming, such as HLS (HTTP
Live Streaming) [3] and DASH [4] has already been the
popular form of video delivery [5]. Adaptive bitrate (ABR)
algorithms enable Internet adaptive video streaming services
to achieve high video quality while avoiding uninterrupted
stall event [5] (§II-A). Revisiting the recent success of ABR
algorithms, heuristics often make decisions based on network
or player status [6], [7], [8]. However, those schemes require
a proper setting of configuration parameters [9], [10] for
fitting different network distributions. By contrast, learning-
based schemes employ several learning technologies, such as
reinforcement learning [11], [12], supervised learning [13],
[2] and imitation learning [14], [15] to train a neural net-
work (NN) w.r.t the given network traffic distributions, and
make a zero-shot inference for unseen networks. In short,
existing ABR algorithms, either heuristics or learning-based
schemes, seldom configure or tune their parameters auto-
matically and rapidly for varying the current network traffic
distribution.

However, in the adaptive video streaming scenario, the
system dynamics are uncertain and the future state cannot be
accurately predicted. To prove this view, we focus on inves-
tigating the impact of ABR algorithms on the distribution of
heterogeneous network traffics, where the distribution is usu-
ally summarized by bandwidth traces experienced by different
users at any time, in any place, and especially, under any
network conditions. Through the analysis of the impact on the
network distributions of different users, vehicles, and network
types, we empirically find that nowadays’ Internet network
conditions are not only diverse but also unique (§II-B). For
example, the heterogeneity of network conditions for each
user is inevitable, since both subjective and objective user
behavior have an important impact on the network traffic
distribution. Nevertheless, existing ABR algorithms, either
heuristics or learning-based, fail to adapt to such heteroge-
neous bandwidth conditions that are significantly different
from the offline training (or tuning) network dataset [16].

Motivated by these facts, we model the ABR playback
process as Input-driven Markov Decision Process (IMDP),
which can express an implicit heterogeneous network environ-
ment in an explicit manner (§III-A). We theoretically illustrate
that vanilla RL technologies can only generalize a strategy
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that can perform well on average rather than every network
condition. While through in-depth analysis, we find that the
most intuitive solution, i.e., reinforced tailored policies in
situ [2], is also impractical since off-the-shelf model-free RL
methods [17] heavily lack sample efficiency, which cannot
train a policy within an acceptable time.

Hence, based on the theory of IMDP, we propose A2BR
(Adaption of Adaptive Bitrate Algorithm), a novel neural
meta-RL ABR system that enables fast adaptation to the
specific network conditions (§III-B). A2BR is composed of
the offline stage and online stage (§IV). At the offline stage,
A2BR trains a meta-model with various real and synthetic
network conditions for learning parameter initialization meta-
policy, where the policy can provide rapid adaptation for
varying heterogeneous networks. To achieve this goal, we
implement the training process based on the state-of-the-
art gradient-free meta-learning technology [18] and utilize
maximum entropy RL methodologies to achieve better explo-
ration (§IV-B). Moreover, at the online stage, the video player,
placed on the user side, receives the trained meta-model
and picks the bitrates w.r.t the meta-policy and the current
specific network status. Upon finishing the video session, the
meta-policy is continually updated to the tailor-made policy
with the collected trajectories. For improving the learning
efficiency, the trajectories are collected not only from the real
world but also from the “virtual world”. Specifically, the vir-
tual world is motivated by domain principles and constructed
by a faithful virtual player and experienced network environ-
ments. In addition, we also employ the domain knowledge
that uses heuristics to enable safe online RL. Subsequently,
the meta-policy will be continually optimized within 20-shot,
i.e., watch 20 videos at the online stage (§IV-C).

In the rest of the paper, we conduct several experiments
to evaluate A2BR with existing ABR approaches (§V). The
case studies contain different types of heterogeneous network
conditions and QoE objectives, including different vehicles,
users’ personalized networks, 4G/5G networks, and varying
user preferences for QoE metrics. Using trace-driven simula-
tion and real-world evaluation on various videos, we show:
1) A2BR improves the video quality by up to 12.6% while

reducing the stall time by 69.3% to 2.8× compared with
previously proposed approaches.

2) In the user-personalized network, A2BR outperforms re-
cent heuristics and learning-based ABRs, with improve-
ments on average QoE of 12%-23%;

3) A2BR maintains high bitrates with low video stall in both
4G and 5G networks, whereas the learning-based approach
Pensieve diverges. At the same time, A2BR either matches
or exceeds the performance of existing schemes on IT-T
Rec P.1203 QoE metric [19]. The average QoE is 10%
higher than the closest ABR approach Fugu [2].

4) A2BR with minor modification can hold QoE metrics with
different user preferences, further providing 5% improve-
ments on QoE at the online stage.

5) We prove that A2BR still performs well on both emulation
and real-world testbed. Ablution studies show that the
online stage further improves the average QoE by 6% after
learning in specific network conditions within 10-shot, and
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Fig. 1. The typical ABR system overview. The ABR algorithm is usually
placed on the client-side.

8% after 50-shot.
The contributions of this work are summarized as follows:

• We empirically analyze today’s heterogeneous network
traffics and propose a two-stage meta-learning scheme for
varying specific network conditions.

• We implement A2BR , which is the first meta-learning with
domain knowledge approach for adaptive streaming.

• Results on different types of network conditions illustrate
that the generated tailor-made ABR policies can well adapt
to heterogeneous networks with relatively few-shot.

II. BACKGROUND AND MOTIVATION

Our research is started with a fundamental quest: How will
the recent ABRs perform in various network traffic environ-
ments?. To answer this question, first, we briefly introduce
the key principle of adaptive video streaming and adaptive bi-
trate (ABR) algorithms. We then use empirical measurements
to elucidate the key limitations of prior solutions.

A. Adaptive Video Streaming

The adaptive bitrate method (ABR) is an algorithm that
dynamically selects video bitrates via network conditions and
the client’s buffer occupancy. The traditional video streaming
architecture is shown in Figure 1. The system consists of
a video player client with a constrained buffer length and
an HTTP-Server or Content Delivery Network (CDN). The
video player client decodes and renders video frames from
the playback buffer. Once the streaming service starts, the
client fetches the video chunk from the HTTP Server or
CDN orderly by an ABR algorithm. The ABR algorithm,
implemented on the client-side, determines the next chunk
and next chunk video quality via throughput estimation and
current buffer utilization.After finishing the session, several
metrics, such as total bitrate, total re-buffering time, and total
bitrate change will be summarized as a QoE metric to evaluate
the performance. Thus, how to achieve high QoE scores for
adaptive video streaming has become a major challenge for
ABR algorithms.

Existing ABR algorithms are generally composed of heuris-
tics and learning-based. Heuristics make decisions from fea-
tures with domain knowledge, e.g., throughput measured [13],
buffer occupancy [7] or predefined models [8]. By contrast,
learning-based ABRs model the process as the Markov de-
cision process (MDP): at each step t, the video client, often
namely agent in RL framework, take a proper action at (i.e.,
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(a) User Heterogeneity (b) Scenario Heterogeneity (3G, 4G, 5G)

Fig. 2. Visualizing personalized networks from the real-world [2], [20], [21]

TABLE I
COMPARISON RESULTS ON DIFFERENT ABRS OVER 3G-CAR AND
3G-BUS NETWORKS, WHERE A2BR IS FINE-TUNED IN 20-SHOT.

Alg.
Bitrate

(Mbps)(↑)
Time stalled

(%)(↓)
Bitrate

(Mbps)(↑)
Time stalled

(%)(↓)
3G-Car 3G-Bus

BOLA 0.99 (3.9%↓) 1.47 (3.5%↑) 1.10 (97%↓) 1.18 (19%↑)
RMPC 1.09 (5.8%↑) 6.66 (3.7×↑) 1.87 (13%↓) 2.13 (1.2×↑)
Fugu 1.08 (4.8%↑) 5.54 (2.9×↑) 1.81 (16%↓) 2.11 (1.1×↑)

Pensieve 1.06 (2.9%↑) 5.47 (2.8×↑) 1.79 (17%↓) 2.12 (1.1×↑)
A2BR 1.03 1.42 2.17 0.99

select a proper bitrate) w.r.t current system status st. The
agent then downloads the chunk and computes a reward rt
for measuring the current quality-of-experience (QoE) of the
past action. The process will terminate if the agent finishes
playing the video session. In the end, we aim to generalize a
policy π to maximize the QoE of the entire session.

The accumulated QoE objective function is defined as
Eq. 1 ([8], [11]), where Rn represents the each chunk’s video
bitrate, Tn reflects the rebuffering time for each chunk n,
q(Rn) means the quality metric such as video bitrate [8]
and VMAF [22] (state-of-the-art quality assessment), µ and
σ are the weight of rebuffering and smoothness penalty,
respectively.

QoE =

N∑
n=1

q(Rn)− µ
N∑

n=1

Tn − σ
N−1∑
n=1

|q(Rn+1)− q(Rn)|

(1)

B. Different Types of Network Conditions

Recently, several learning-based schemes have been made
to train an NN policy from the clean slate via various RL
methods [11], [23]. Unfortunately, such one-fits-all schemes,
including heuristics and learning-based can hardly always
perform well in today’s network traffics due to the diversity of
real-world network conditions [2]. We show the personalized
network environments from two perspectives.

Sorted by users: First, we measure a portion of data from
the Puffer project [2] and demonstrate the users’ personalized
network status on June 2, 2021, in Figure 2(a). The left figure
illustrates the correlations between throughput and round-trip-
time (RTT) of each user. As shown, in the real world, the
average bandwidth is particularly varied, ranging from 0.1 to

100 Mbps. The lower bandwidth leads to larger RTT. The
network environment of each user is different. Someone can
watch the videos with high bandwidth and low RTT, while
the others live in the low bandwidth and high RTT scenario.
The right figure plots the fine-grained cumulative distribution
function (CDF) of throughput and RTT of the users with top-
8 viewing hours on that day. We can find the tailor-made
features for personalized network conditions: some of the
users have very constant throughput (e.g., user C and user F),
while most of the users’ bandwidth is unstable and doesn’t
cover all network conditions.

Sorted by scenarios: Next, Figure 2(b) shows another
personalized network condition that is categorized by network
types, which covers 3G, 4G, and 5G networks. Testing results
on the bus, car, and metro environments show that different
vehicle speeds lead to very different 3G bandwidth distri-
butions. For instance, we can see the throughput measured
from the metro achieves the lowest average and fluctuation
value among the candidates. While we observe the highest
bandwidth with high fluctuation in the 3G-car scenario. Mean-
while, in addition to the various network specifics on 4G and
5G, the network distributions are always influenced by user
behaviors: the network on walking and driving also have their
particularity. Hence, the domain gap, which represents the
relationship between network traffic distributions across dif-
ferent network types and users, has brought great challenges
to recent rate adaptation algorithms.

ABR performance: How do existing one-fits-all ABR
algorithms perform in such diverse but unique network con-
ditions? Table I shows the average bitrate and stall ratio
of existing ABR algorithms (§V-A) over different mobility
types (car and bus) [20]. We show that the irregular networks
greatly disturb the stability of the learning-based algorithm,
since the difference between the network traffic distributions
of the training set and the testing set. Moreover, heuristics
like BOLA and RobustMPC (RMPC here) often perform
well in one scenario but fail in the other, e.g., BOLA
gains a low average bitrate and RobustMPC performs with
a high stall ratio. Results indicate that the domain gap among
heterogeneous network scenarios (e.g. Figure 2(b)) leads to
the unstable performance of both heuristics and learning-
based approaches [24], [16]. One of the feasible ways is to
enable the policy to quickly adapt to the current network
condition with few trials. As shown, our proposed method
A2BR outperforms existing techniques on video bitrate and
stall ratio after being trained in 20-shot.
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In summary, we argue that off-the-shelf “one-fits-all” ABR
algorithms fail to provide acceptable performances for all
users since the diversity of users’ network conditions.

III. METHODS

In this section, we start with modeling the tailored ABR
process as an Input-driven Markov Decision Process (IMDP).
Next, we explain why we have to construct a two-stage
process rather than a vanilla one-stage approach. Finally,
we briefly introduce meta-agnostic meta-learning and how to
leverage domain knowledge.

A. Input-Driven MDP

Motivated by the observation above, we place the ABR
problem in the discrete-time input-driven Markov decision
process (MDP) [25], [26]. In detail, we consider the vanilla
adaptive video streaming process: at each step t, the video
client, often namely agent in RL framework, select a proper
bitrate w.r.t current system status. The agent then downloads
the chunk and computes an instant score for measuring the
quality of the past action. The process continues until the
agent finished playing the video session.

Definition 1. An input-driven MDP M is defined by a 4-
tuple M = (S,A,Z,R), in which S ⊆ Rn is a set of n-
dimensional states observed (e.g., past throughput measured,
buffer occupancy, past bitrate selected, etc.), A ⊆ Rm is a set
of m-dimensional actions, representing the bitrate candidates
of next video chunks, Z = {z0, z1, . . . },⊆ Rk is a set of
k-dimensional input process, as S × A → R denotes the
intermediate reward for each bitrate selection operation on
the given state.

Commonly, the input process in the ABR problem is often
denoted as a set of exogenous variables. For example, the per-
sonalized network traffic distribution for each user, network
status in various network types, tailored QoE preference, etc.
Notably, zt is a general process, which is independent for
the state st and action at. In other words, the at depends
on st only, with no relationship to zt – this is the key dif-
ference between input-driven MDPs and Partially Observable
MDPs [27]. The reward function for ABR algorithms is often
defined to achieve high quality of experience (QoE).

Definition 2. For an input-driven MDPs, the stochastic
transition dynamics are given by

Ta(s
′; s, z) = Pr(st+1 = s′; st = s, at = a, zt = z), (2)

representing a state-transition probability of next state st+1

with the given any state st, action at, and current personalized
networks zt.

Definition 3. Followed by the definition of input-driven MDP,
the Q-value of a given state-action pair can be defined as

Q(s, a, z) =
∑
s′∈S

Ta(s
′; s, z) (r(s, z, a) + γV (s′, z′)) (3)

Here V (s′, z′) is the value function for state s′, γ is the
discounted factor ∈ [0, 1).

When γ < 1, there exists an optimal policy π∗(s, z):

π∗(s, z) = argmax
a∈A

∑
s′∈S

Ta(s
′, z′; s, z)(

r(s, z, a) + γ max
a′∈A

Q(s′, a′, z′)

) (4)

Here we consider two agents with the same policy π, while
they work in the IMDPs with different input processes Z1 and
Z2. When observing the same state s, the following agents
would determine the same action a. Thus, the difference
between the Q values of two agents will be equal only if
Z1 equals Z2.

For solving Eq. 4, we can employ various reinforcement
learning (RL) strategies if Z is known before the process
starts. However, in practice, the agent cannot perceptualize
its personalized network traffic before transmitting video
streams. Assuming that the input process Z is “agnostic” for
the agent, we find that vanilla RL method can only learn the
optimal policy π̂∗ which is relevant to Q(s′, a′) instead of
Q(s′, a′, z′):

max
a′∈A

Q(s′, a′) = Ez′∼T max
a′∈A

[Q(s′, a′, z′)]. (5)

There exists the variance reduction between the two cases,
which eventually results in the sub-optimal policy [26].
Hence, we have a challenge here: considering that the input
process can hardly be explicitly observed, how to learn a
tailor-made ABR algorithm for heterogeneous network condi-
tions?

B. Meta-RL with Domain Knowledge

With the rapid progress of on-device machine learning in
both academia [28] and industry [29], training NNs on users’
devices has already been a practical way of learning the tailor-
made ABR policy from a clean slate in situ. Nevertheless,
recent model-free RL technologies lack sample efficiency,
which requires high convergence time on each client [2].
For example, a single agent requires at least 640,000 steps,
spanning over 2 years, to converge in the real world. Most
users would leave the platform before the algorithm has been
completely trained [11].

In this paper, we consider a two-stage approach, which
is composed of offline stage and online stage. Technically,
at the offline stage, we attempt to train the meta policy via
the traces collected by different network conditions, aiming
at improving the average performance for all networks. At
the online stage, we continually optimize the meta policy
to fast “identify” the unique input process for adapting to
the personalized networks. To achieve this, we encounter
two new challenges based on the specific features of ABR
tasks: i) how to obtain a good parameter initialization for
fast-learning? ii) How to efficiently learn tailor-made ABR
algorithms online?

Model agnostic meta-learning: for the first challenge,
we present a method based on meta-learning, which pro-
vides an alternative paradigm to improve the learning al-
gorithm itself and gains experience over multiple learning
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Fig. 4. The system overview of A2BR . A2BR mainly consists of two stages, the offline stage
and the online stage.

episodes [30]. Treating the task as the user’s personalized
network environment, we find that model agnostic meta
learning (MAML) [18] is quite suitable in personalized ABR
scenarios where the network traces on each user are quite
limited. More comparison of existing meta-learning methods
is discussed in §VI-A. Specifically, MAML consists of an
inner loop and an outer loop. For every cycle of the outer
loop update, a specific task will be sampled from a distribution
of tasks. and trains the parameter weights that determine the
agent’s behavior. In the inner loop, the agent interacts with
the sampled environment and optimizes for maximizing the
accumulated reward, i.e., QoE (Eq. 1).

Let θ denote the parameter weights, inner/outer loop learn-
ing rate are represented as α/β, and policy improvement
function L, for a distribution of task T, the meta-optimization
process can be presented as Eq. 6.

θ ← θ − β∇θ

∑
Ti∼p(T)

LTi (fθ − α∇θLTi (fθ)) (6)

Leveraging domain knowledge: for tackling the second
challenge, apart from the gains from MAML, we attempt
to adopt the domain principle and knowledge of adaptive
video streaming to accelerate the learning efficiency on the
online stage. On the one hand, given a complete network
trace, recent research has revealed that the ABR process
can be precisely emulated by an ABR virtual player [10],
[31]. Thus, based on the domain principles of the ABR
framework, we implement a faithful ABR simulator to virtual
rollout the trajectories, aiming to help improve data efficiency
and generalization ability. On the other hand, we treat the
domain knowledge of state-of-the-art heuristics [8] as the
fallback policy which can help identify if the meta policy
takes the system into the unexpected status (e.g., interrupt
stall event). Putting them together, during the online stage,
the agents continually optimize the meta policy according to
the trajectories collected from both the real-world and the
virtual player, while the real-world samples often account for
a small part of them.

IV. A2BR OVERVIEW

We propose A2BR (Adaption of Adaptive BitRate), a novel
neural ABR system that can quickly adapt the personalized
network conditions via meta-RL and domain knowledge. The
system workflow is shown in Figure 4. A2BR consists of

offline meta stage and online adaptation stage. At the offline
stage, we train a meta-model using MAML with various
network environments to learn a good parameter initialization
for achieving both acceptable ”mean” performance and fast
adaptation. At the online stage, the agents continually tune the
meta-model with the help of domain knowledge for rapidly
varying the personalized network condition, i.e., generating a
tailor-made ABR algorithm.

A. Basic Training Algorithm
In this section, we introduce the NN architecture for

each model in A2BR . First, we describe the NN’s inputs,
outputs, and architecture. Then, we explain the basic training
methodology of A2BR .

1) NN Model Overview: The NN architecture is shown in
Figure 5. Here we denote the parameters of the meta actor
model as θπ and the meta critic model as θv . What’s more,
we refer to the combination of the meta actor model and critic
model as the meta actor-critic model.

Inputs. As mentioned before, A2BR is allowed to con-
tinually learn the system dynamics at the online stage, which
motivates us to consider the computational overhead during
the inference phase. In other words, A2BR ’s input should be
carefully designed by avoiding trivial features. In the begin-
ning, we train a teacher network with all possible features as
the input (e.g., past bitrate, buffer throughput, download time,
response time, bitrate map, chunk map, chunk remaining).
Next, we use light weighted machine learning model, i.e.,
decision tree, to imitate the NN’s policy and prune the most
trivial features [32]. Finally, our state representation is listed
as follows.

For each video chunk t, the agent takes 5 metrics, totally
17 critic features, as the state st. The state contains past
video quality qt, current buffer occupancy bt, past k chunk’s
throughput measured, i.e., Ct, past k chunk’s download time,
i.e., Dt, and past k chunk’s response time: i.e., Pt. Hence,
the state st can be written as {qt, bt, Ct, Dt, Pt}. We set
past k as 5 for further reducing the state size due to the
light-weighted requirements. Moreover, instead of feeding the
exact values of gathered statistics to the agent, we also use
normalized statistics. The state normalization method enables
the agent to generalize the strategy better in unseen network
environments [33].

Outputs. The A2BR ’s actor model uses a discrete action
space, i.e., an n-dim vector, which indicates the probability
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Fig. 5. A2BR ’s NN architecture overview. A2BR consists of an actor
network and a critic network.

of the bitrate level being selected under the current state. The
A2BR ’s critic model outputs a single scalar, representing the
estimated value for the current state.

NN architecture A2BR uses a neural network (NN) to
take an action for the given state. For each video chunk, the
agent mainly takes the past five values as a sequence for
representing the current state, including past video quality,
buffer occupancy, throughput, download time, and response
time. As shown in Figure 5, the A2BR ’s NN architecture uses
several Conv-1D layers and fully-connected layers to extract
features. In detail, we first use three Conv1D layers with
feature number=64, and kernel size=1 to extract features from
throughput, download time, and response time. Meanwhile,
we adopt two fully-connected layers with feature number=64
to up-sample the features of past video quality and buffer
occupancy. Then we use a concatenate layer to concentrate
all the features and take a fully connected layer with 64
neurons to down-sample the features. Finally, we take an n-
dim vector with Softmax activation function to represent the
actor network’s output and use a single scalar to represent the
critic network’s output.

2) Maximum Entropy PPO: As mentioned before, the
basic idea of DRL is to improve the policy via improving
the probabilities of the high-reward-samples and avoiding
the possibilities of the failure-samples from the sampled
trajectories. In other words, the improved policy π at state
st is required to pick the action at which produced the best-
accumulated reward Rt, i.e., at = argmaxa Et[Rt(st, zt, a)].

Due to the setting of meta-learning (§III-B), A2BR often
requires more exploration at the offline stage, while less
exploration but more exploitation at the online stage. To
that end, inspired by the recent maximum entropy poli-
cies [34], we present ME-PPO (Maximum Entropy Proxy
Policy Optimization) to train the NN. See in Eq. 7, the
improved policy πθ at state st is required to pick the optimal
action at

∗ which produced the best accumulated reward
Rt=

∑
t γ

t(rt + λHπθ (st)), in which Hπθ (st) is the entropy
of the current policy (Eq. 8), λ is the entropy weight which

encourage exploration feedback. It is strongly correlated to
the unpredictability of the actions which an agent takes in a
given policy. The greater the entropy, the more random the
actions that an agent performs, and vice versa.

at
∗ = argmax

a
Êt[

∑
t

γt(rt + λHπθ (st))] (7)

Hπθ (st) = −
∑
i∈A

πθ(ai; st) log πθ(ai; st). (8)

ME-PPO is incrementally implemented based on state-
of-the-art on-policy DRL algorithm Dual-clip Proxy Policy
Optimization (Dual-PPO) [35]. Briefly, the Dual-clip PPO
algorithm adopts a double-clip method to restrict the step size
of the policy iteration and update the NN by minimizing the
following clipped surrogate objective.

The loss function of the A2BR ’s actor network is computed
as Eq. 10,

LPPO = min
( πθ(at|st)
πθold(at|st)

(θ)Ât,

clip
( πθ(at|st)
πθold(at|st)

(θ), 1− ϵ, 1 + ϵ
)
Ât

)
.

(9)

LME-Policy =

{
Êt[max(LPPO, cÂt)] Ât < 0

Êt[L
PPO] Ât ≥ 0

(10)

where Ât is the advantage function:

Ât = rt + γ[V πθ (st+1) + λHπθ (st+1)]− V πθ (st). (11)

Here ϵ and c are hyper-parameters that control how to clip
the gradient. We set ϵ = 0.2, c = 3 as consistent with the
original paper [35].

The A2BR ’s critic network Vθp is updated via minimizing
the error of the advantage function Ât: LValue = 1

2 Êt [At]
2
.

We summarize the loss function LME−PPO in Eq. 12.

∇LME−PPO = −∇θL
ME-Policy(πθ, Ât) +∇θvL

Value. (12)

Meanwhile, considering that on-policy RL is sensitive to
the entropy weight and it usually requires careful tuning [10],
we autonomously adjust the entropy weight λ for minimizing
the gap between the current entropy and the target entropy
Htarget (Eq.13). We set Htarget = 0.1 as suggested by related
work [36]. α is the learning rate of the actor-network.

λ← λ− α [Hπθ (st)−Htarget] . (13)

We summarize all hyper-parameters of ME-PPO as follows:
i) entropy weight λ, ii )PPO clip factor ϵ, iii) Dual-clip PPO
clip factor c, iv) target entropy Htarget, and v) learning rate
α, β. It’s important that most parameters (i.e. ϵ, c, α, β) are
configured as the default settings of the original paper [17],
[35], [36]. The only special parameter is the entropy weight
λ. It is dynamically being tuned by Htarget and α during
training.
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Algorithm 1 Meta-learning for the Offline Stage
Require: p(Env): distribution over heterogeneous networks.
Require: α, β: learning rate for inner-loop and outer-loop.

1: randomly initialize ψ, θπ , and θv
2: while not done do
3: Sample user’s network environments Envi ∼
p(Env)

4: // Train the NN in parallel, agent number K
5: for Envi in K do
6: // Inner Loop Phase
7: Rollout M trajectories D in Envi using fθ.
8: Meta-update using using ME-PPO:

θ′i ← θ − α∇θL
ME−PPO
Envi

(fθ,D).
9: // Outer Loop Phase

10: Sample trajectory D′
i using fθ′

i
in Envi.

11: end for
12: // Outer Loop Update
13: Update θ with D̂ = {D′

i|i = 1,· · · ,K} using policy gra-
dient: θ ← θ − β∇θ

∑
Envi∼p(Env) L

PG
Envi

(fθ′
i
,D′

i).
14: end while

B. Meta-Learned Policies for Offline Stage

Inspired by vanilla MAML methods, the offline training
phase can be categorized into the inner loop phase and outer
loop phase (Alg. 1). In the inner loop phase, for each epoch,
the worker i first randomly picks a specific network condition
as the environment from the network status pool, and samples
N trajectories in that environment according to the current
policy πθ. Then the meta-model is optimized by the collected
trajectories with the ME-PPO method. Here we treat the
learned meta-model as θ′i. In the outer loop phase, the worker
i continually rollouts several trajectories from the randomized
selected environments with the meta-policy f(θ′i), and com-
putes gradients for θ with the trajectory. Subsequently, each
worker sends the computed gradients to the central agent. The
central agent finally merges the gradients via workers’ loss
functions and the outer loop’s learning rate β. In addition,
we make the training phase of the online stage more practical
from different perspectives.

Meta-learned value network. First, we adopt fresh tra-
jectories to adapt the meta value network before updating the
meta policy network. Such settings allow the framework to es-
timate the advantage function precisely and avoid introducing
extra bias caused by exogenous inputs to the baseline [26].

Policy gradient for the outer loop. Next, we focus on
policy gradient methods [37] for expressing the loss function
of the outer loop to accelerate the training process, since
there’s no obvious distinction in the overall performance
between the complex ME-PPO loss and the vanilla policy
gradient loss in the outer loop. In turn, we keep using ME-
PPO in the inner loop due to its advantages compared with
the policy gradient method (Eq. 14).

LPG = −Et

[
∇θ log πθ(at; st)Ât

]
(14)

Training with First-Order MAML. Finally, we sim-
plify the MAML process to the First-Order MAML, which

Algorithm 2 Learning Tailor-made ABRs for the Online Stage
Require: θ: The trained meta-model in the offline stage.
Require: DEnv:the collection of network environments ex-

perienced.
1: DEnv = {}.
2: for video session do
3: // Rollout policy with the “real” player.
4: t ← 0; D = {}.
5: while not done do
6: Get ABR state st.
7: Get π w.r.t st and θ: πθ(st).
8: Predict future throughput: ĉt.
9: Generate mask m with the fallback policy (Eq 16).

10: Pick ât according to Eq. 15.
11: Calculate instant reward rt.
12: Add {st, ât, rt} to D.
13: t ← t+1
14: end while
15: Estimate environment experienced Env from D in

hindsight; Add Env to DEnv.
16: // Rollout policy from virtual environment.
17: for M Rollouts do
18: Uniformly sample condition Env′ from DEnv.
19: Rollout trajectories D′ using Env′ and f(θ).
20: Add D′ to D.
21: end for
22: Update meta-model θ with D.
23: end for

computes the meta-objective derivative at the post-update
parameters directly [38]. In brief, first-Order MAML ignores
the second derivative part and doesn’t have to use all the inner
gradients for updating.

C. Learning Tailor-made ABRs for Online Stage

Recall that we attempt to learn a tailor-made ABR algo-
rithm for varying current heterogeneous networks within few-
shot learning at the online stage. As much as MAML enables
the meta models (i.e., NN) to learn quickly for varying the
current users’ network condition, it still takes at least 2,000
times on watching videos to complete the adaptation to the
current network (even it’s 320× faster than the prior approach
that learns from clean slates). Hence, we leverage domain
principles and knowledge, such as virtual environment replay
and safe exploration for online RL, to further improve the
learning efficiency in the online stage.

More specifically, the online training process is mainly
composed of a learner, an environment collector, and a
fallback policy. The pseudocode in Alg. 2 depicts the overall
algorithm. When the video session starts, the video player
receives the trained meta model θπ from the training server.
Then the player makes the ABR decision with the combina-
tion of the meta policy and the fallback policy. Such a hybrid
decision enables the player always to play on the “safety”
track.

Fallback policy design: The pre-trained meta-model learns
parameter-initialization for varying different network con-
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ditions, while it hardly guarantees the robustness of our
system at the online stage. The meta-model is required to
be continually trained at the online stage, as unsafe bitrate
decisions may still happen due to action explorations or
unexpected changes in the network environment. Hence, we
have to design a proper fallback policy to avoid unnecessary
stalling events caused by exploration. However, revisiting
the recent safe and robust online RL approach [39], [40],
[41], [42], [43], we find that none of the schemes can
satisfy our requirements. For example, reward shaping-based
approaches such as OnRL [41] and Deep-OR [40] integrate an
instinct reward signal as a switching penalty into the reward
function. While in our case, the reward functions of the offline
stage and the online stage must be consistent, otherwise, the
critic network has to be retrained w.r.t the changed reward
function. Such inaccurate value estimations will eventually
break the fast learning. Meanwhile, other vanilla mask-based
approaches (e.g., Decima [42]) block the unsafely or invalid
actions by applying action masking [44]. Nevertheless, the
mask values are often determined by the exogenous inputs,
e.g., global DAG information ( [42]), which is not included in
the state space. Hence, the tailor-made ABR policy cannot be
successfully learned without changing the state representation.

To this end, we propose a fallback policy that only relies on
the metrics in the current state representation, that is, it doesn’t
require any additional modification to the reward function.
The fallback policy is a hybrid scheme that combines the
original NN’s actor outputs and the mask of a heuristic-based
method, shown in Eq. 15. The key principle of the mask is to
“filter” out all the bitrate actions that might incur rebuffering
events, instead of directly making bitrate selection policies.
As listed in Eq. 16, the heuristic-based method is motivated
by HYB [10] that simply picks the maximum bitrate without
occurring stall events. In detail, at chunk t, the hybrid action
ât for the given state st becomes

ât ∼ {
mie

wi∑
j mjewj

|∀i = [1, . . . , j]} (15)

mi =

{
1 ĉtbt −RiL > 0

0 otherwise,
(16)

where for the i-th mask of the total bitrate levels (aka., actions)
j, mi indicates a mask, presented by a {0,1} vector, that con-
trols whether the action ai are safe or not. ĉt is the predicted
network capacity. Here ĉt is calculated by the average value
of past throughput measured, i.e., ĉt =

∑
Ct/

∑
(Dt + Pt).

Note that it can be measured by any prediction method,
such as EWMA and harmonic mean. bt is the current buffer
occupancy of the player. Each chunk has the same video time
of L seconds. Thus, RiL means the average chunk size for
the i − th bitrate-level. w represents the final NN output
with no activation functions. The mask values can be easily
computed from the state input. As a result, we can still use
the original training techniques to update the NN since the
back-propagation of the gradient of the NN still holds.

We evaluate the proportion of using the original meta-
policy and fallback policy. Results show that the fallback
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(b) Simulation with RTT.

Fig. 6. Our virtual player focus on the RTT dynamics (right side), which
leads to better simulation results.

policy only accounts for about 1%-4% of the overall decision-
making in different network scenarios (not shown). It makes
sense since the fallback policy will be enabled only if the
meta-policy picks the bitrate that might occur during the stall
event. In other words, the fallback policy is the lower bound
of A2BR . Most of the decisions are still determined by the
meta-policy model.

Consequently, the player safely rollouts the trajectory D

w.r.t the hybrid policy. Upon finishing the session, we “re-
store” the current network Env from D and put it into the
environment collector DEnv. Then we randomly sample M
network environments from the collector and use the virtual
player to roll out another set of trajectories D′. Finally, the
learner employs ME-PPO for meta policy training according
to D and D′. We discuss the best learning epoch for A2BR
in §VI-B.

V. EVALUATION

In this section, we evaluate A2BR in several personalized
network environments, including user-personalized, 3G, 4G,
and 5G networks, where the average bandwidth of which are
gradually increased, ranging from 3 Mbps to 110 Mbps. Fur-
thermore, we enhance A2BR to support varying the QoE of
user preferences. Finally, we conduct a real-world experiment
to understand the generalization of A2BR .

A. Methodology

Implementation. The A2BR ’s gym-like environment and
the virtual player are written by Python 3.6. At the same time,
we adopt TFLearn 1.5.0 [45] to build the A2BR ’s NN and
TensorFlow 2.4.0 [46] to implement the training workflow. We
set inner loop’s learning rate α = 10−4, outer loop’s learning
rate β = 10−3, virtual player rollout M=20. Meanwhile, we
use Adam [47] to optimize the model.

Testbed. We build a trace-driven “gym”-like [48] simulator
to train and validate A2BR w.r.t various network datasets
and video sets. The simulator is pragmatically implemented
based on various state-of-the-art ABR virtual simulators [49],
[14]. Moreover, we integrate round trip time (RTT) into
the simulator for improving the accurateness of throughput
measurement.

Simulator fidelity. Now we show the strength of our
proposed virtual player. Previous studies demonstrate that the
used congestion control algorithm can impact the performance
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TABLE II
RESULTS OF EXPERIMENT IN DIFFERENT VEHICLES, SUMMARIZED IN VMAF [22] AND STALL TIME.

Car Bus Ferry Metro

Alg. VMAF(↑)
Time stalled

(%)(↓)
VMAF(↑)

Time stalled
(%)(↓)

VMAF(↑)
Time stalled

(%)(↓)
VMAF(↑)

Time stalled
(%)(↓)

BOLA 67.42 1.47 71.21 1.18 66.09 5.68 64.78 3.88
RobustMPC 63.18 6.66 74.43 2.13 59.90 2.65 60.71 2.06

Oboe 67.80 4.10 76.33 1.94 64.08 2.71 61.58 1.98
Fugu 66.41 5.54 76.59 2.11 59.96 1.96 61.33 1.82

Pensieve 65.83 5.47 72.34 2.12 60.23 3.14 59.14 1.79
Comyco 67.68 3.74 77.17 1.84 63.24 2.28 62.59 2.39

A2BR (VMAF) 68.65 1.42 83.78 1.03 60.71 1.45 63.34 1.79

of ABR algorithms due to the cross-layer effects, as one
of the better solutions is to faithfully measure the round-
trip propagation time at each time [50]. At the same time,
round trip time (RTT) is also observable, since the video
client can estimate the current RTT via estimating time-to-
first-byte (TTFB) or response time [4]. To that end, we apply
the RTT dynamic module to the simulator for enhancing the
throughput prediction. We conduct 4 real-world experiments
to prove the effectiveness of our simulator. Specifically, we
propose a Round-Robin ABR algorithm that picks the bitrate
orderly and uses the algorithm to collect the information for
each chunk, such as download chunk size, download time, and
current RTT. After finishing the video session, we compute
the throughout for each bitrate using RTT or not using RTT
respectively. Note that we finish the experiment in stationary
network environments, in which their network capacity does
not change rapidly. Results are illustrated in Figure 6. We
can see that estimating throughput with RTT performs much
better than that not using the RTT metric.

ABR Baselines. We select several representational ABR
algorithms, which include heuristics and learning-based. All
the baselines are retrained or tuned for fitting each experiment.

• BOLA [51]: a popular buffer-based heuristic that turns
the ABR problem into a utility maximization problem and
solves it by using the Lyapunov function.

• RobustMPC [8]: the state-of-the-art heuristics which con-
sider both the buffer occupancy and throughput predictions
and maximize the QoE by solving an optimization problem.
BOLA and RobustMPC are still top-2 methods that are
widely deployed in industries [4], [31].

• Fugu [2]: an ABR algorithm that leverages deep neural
network (DNN) to estimate download time for each chunk,
and uses model predictive control (MPC) to make decisions
according to the estimated values. We retrain the DTP
model of Fugu with partial information since it requires
some TCP metrics which is not fully logged in the dataset.

• Pensieve [11]: an RL-based algorithm which takes the
former network status as states and optimizes itself with
various network conditions using A3C method [52]. In this
work, we retrained Pensieve with our videos, datasets, and
QoE metrics.

B. Case Study: Different Vehicles

First, we evaluate A2BR and existing ABR algorithms in
the personalized network scenarios which consider the various
type of vehicles, including the car, bus, ferry, and metro.

1) Network and Video Settings: For the training set, we
adopt a Markovian model where each state represented an
average throughput in the range of 0.1-6Mbps [11]. For
each epoch, we randomly sample trajectories with different
initial parameters and take them as the virtual personalized
scenario. In the online stage, we use HSDPA [20], a well-
known 3G/HSDPA to continually train the meta-model. The
network scenarios are naturally categorized into bus, car,
ferry, and metro. Meanwhile, we use EnvivioDash3 to evaluate
existing algorithms, where the video chunks are encoded as
{0.3, 0.75, 1.2, 1.8, 2.8, 4.3} Mbps [4]. Besides that, we opti-
mize A2BR with the quality-aware QoE metric QoEv , which
is constructed by video quality, rebuffering time, positive and
negative smoothness [14] (Eq. 17). In this experiment, we set
the maximum buffer size=60 seconds.

QoEv = αv

N∑
n=1

q(Rn)− βv

N∑
n=1

Tn + γv

N−1∑
n=1

[q(Rn+1)− q(Rn)]+

− δv

N−1∑
n=1

[q(Rn+1)− q(Rn)]−

(17)
Here αv , βv , γv , δv are the parameters to describe their

aggressiveness. Followed by the original paper [14], we set
αv = 0.8469, βv = 28.7959, γv = 0.2979, δv = 1.0610.
Furthermore, for the sake of fairness, we also comparing the
A2BR with additional ABR approaches:
• Oboe [10], an auto-tuning mechanism that detects changes

in network conditions and adjusts ABR’s hyper-parameters
according to the configured map. Since the official imple-
mentation of Oboe is not publicly available, we have tried
our best to reproduce Oboe. For more detail please refer
to [53].

• Comyco [14], a quality-aware ABR scheme that leverages
imitation learning to improve the policy. We adopt the pre-
trained model provided by the authors.
2) A2BR vs. Existing Algorithms: We list the comparison

results in Table II, where the video quality is measured as



10

0 10 20 30 40
Average QoE (user id=100)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
A²BR
BOLA
Pensieve
Fugu
RobustMPC

0 10 20 30 40
Average QoE (user id=687)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

25 30 35 40
Average QoE (user id=897)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

10 0 10 20
Average QoE (user id=1871)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

0 10 20 30 40
Average QoE (user id=2540)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

20 10 0 10 20 30
Average QoE (user id=2634)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

28 30 32 34 36 38 40
Average QoE (user id=3805)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

10 0 10 20 30 40
Average QoE (user id=4755)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A²BR
BOLA
Pensieve
Fugu
RobustMPC

Fig. 7. Comparison results of user-personalized network conditions. In detail, we select top-8 users among 1000 unique users from the Puffer network dataset.
Results are plotted with the CDF of QoE metrics.

VMAF [22]. Here we can see that A2BR gains the highest
VMAF score while guaranteeing the lowest stall time in Car
and Bus scenarios. In particular, A2BR improves the average
VMAF by up to 12.6% and reduces the average stall time
by 78.8% compared with RobustMPC. A2BR also performs
better than Pensieve with the average VMAF of up to 12.6%
and the stall time of up to 69.3%. Furthermore, we observe
that although A2BR doesn’t achieve the best performance on
both VMAF metric and stall time in the Ferry and Metro
network scenario. Here we make a deeper analysis as follows:

1⃝ Our first observation is A2BR reaches the lowest stall
time among all candidates and its VMAF comes only last
followed by BOLA. However, BOLA performs 1.1×-2.8×
higher stall time than that of A2BR , which is surely a
considerable price. In particular, BOLA often occurs rebuffer-
ing events (i.e. 5.68% in terms of the stall ratio) under the
Ferry scenario. With further analysis, we observe that the
network throughput of the Ferry scenario is highly variable.
Traditional model-based approaches RobustMPC estimates
the throughput cautiously, requesting chunks at median-level
bitrates with keeping a medium-sized playback buffer. While
BOLA mainly takes current buffer size as inputs, failing to
perceive heavy ramp-down or ramp-up on the throughput.
Hence, BOLA strongly prefers HD videos but occurs a high
stall ratio in the Ferry scenario. In contrast, A2BR attempts
to reduce the rebuffering time rather than picking chunks
with higher bitrates. Comparing the performance of A2BR
and Pensieve, we can see that A2BR maintains the behaviors
on average quality but further decreases 1.69% on relative
time stalled.

2⃝ Second, comparing A2BR with Fugu in 4 scenarios,
we observe that, although Fugu leverages accurate prediction
to exceed RobustMPC, Fugu also underperforms A2BR in
low-speed vehicles, such as the car and bus. In such sce-
narios, accurate throughput prediction hardly influences QoE.
While Fugu almost matches the performance of A2BR on
both VMAF and stall ratio, which indicates the strength of
throughput prediction.

3⃝ Finally, Oboe and Comyco show similar behavior over
all considered scenarios, i.e., gaining higher video quality but

slightly increasing the risk of rebuffering. The average time
stalled for A2BR is 62% lower than Comyco and 65% lower
than RobustMPC on the car scenario. One of the reasons
is that these schemes heavily depend on shortening the gap
between the network distributions of the training set and the
test environment. Same conclusions have also been observed
in the results of Pensieve. A2BR employs the online learning
phase to “understand” and vary current network conditions,
which eventually yield better performance.

C. Case Study: User-Personalized Networks

Next, we compare the performance of A2BR with baselines
in the user-personalized network conditions.

1) Network and Video Settings: We use the Puffer net-
work dataset [2], which includes 580,708 real-world wired
network environments collected from 28089 unique users.
We randomly sample 1000 unique users from the dataset as
the user-personalized network dataset. Each user contains at
least 30 unique network traces and each trace lasts over 300
seconds. We split the dataset into two groups, where 80% of
the dataset for training and 20% of the dataset for testing.
Considering the wide range of users’ network bandwidth, we
use a 4K DASH dataset provided by Quinlan et. al. [54] as the
video description. The videos are encoded at 13 bitrate levels,
ranging from 0.235Mbps to 40Mbps (i.e., 40Mbps, 25Mbps,
15Mbps, 4.3Mbps, 3.85Mbps, 3Mbps, 2.35Mbps, 1.75Mbps,
1.05Mbps, 750Kbps, 560Kbps, 375Kbps, 235Kbps). We set
µ = 40, σ = 1 to balance the conflicting goals in QoE (Eq. 1),
which is consistent with the maximum bitrate of the video.
In this part, we set the maximum buffer size as 40 seconds.

2) A2BR for different users: To better understand the
A2BR ’s performance on each user, we report the de-
tailed QoE breakdown of ABR algorithms over top-9 user-
personalized network conditions in Figure 7, in which the
user id represents the user logged in the Puffer dataset. As
shown, BOLA performs well in fast-network scenarios with
a small bandwidth jitter, such as user No. 897 and 3805.
Especially in user No. 3805, BOLA even achieves the same
performance compared with A2BR . While it fails to work
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Fig. 8. Comparing the performance of A2BR with existing ABR approaches
in the user-personalized network conditions. (Primary experiment: 650
stream-hours, Slow-network users: 117 stream-hours.)
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Fig. 9. Demonstrating bad cases of A2BR . A2BR perform even worse than
before if continually trained over such network conditions.

well in slow-network scenarios, e.g., user No. 1871. One of
the underlying reasons is that existing heuristics, including
BOLA and RobustMPC, require proper parameter settings
to vary different network conditions. Although Oboe [10]
considers using an auto-tuning method to help prior ABR
algorithms for fitting different throughput regimes, it lacks
fast adaptation ability. Specifically, Oboe adopts the offline
mapping method to generate tailor-made ABR strategies for
each network state. However, considering that computing the
best parameter configuration for one network state takes about
12 seconds on a single core, computing a user-personalized
network condition will take approximately 3 hours to explore
with 1 core [10]. Thus, it’s quite impractical to online map
the best parameter for each user. The same conclusions
are also observed in lifelong learning-based ABRs such as
Comyco [24] and Fugu [2]. Comyco requires an hour to
retrain the global policy as Fugu lasts a day to refresh the
model. Especially, both Comyco and Fugu are interested
in providing good video delivery QoE for all users instead
of on average. In Figure 7 we can see that Pensieve does
perform well across all considered network scenarios while it
seldom performs the best performance among all baselines.
In contrast, A2BR rivals or outperforms other ABR schemes
for most users in 20-shot.

3) A2BR vs. Baselines: Figure 8(a) shows the QoE break-
down of A2BR and recent baselines. The results are evaluated
on 650 stream-hours of network data. The performance gain
in QoE between A2BR and existing heuristic baselines is
approximately 51% (BOLA) and 21% (RobustMPC). As
expected, we also find that A2BR also outperforms recent
learning-based approaches, with the improvements on QoE
of 12% on Pensieve and 21% compared with Fugu. It makes
sense since existing ABRs didn’t consider the input process,
while such schemes will eventually fail if the current per-
sonalized network behaves differently from the fixed training
network set. What’s more, we report the breakdown results
performing on the slow network users, where the users have
an average throughput of less than 10Mbps. Such typical
low-bandwidth scenarios are quite challenging for ABR algo-
rithms [5]. As shown in Figure 8(b), we can see a significant
benefit from using meta-RL for fast adaptation. Especially, the
gap between A2BR and Pensieve widens to 51% for average
QoE. One of the reasons is A2BR pays more attention to
avoiding stall time (0.26% vs. 0.49%), which is 1× lower

than that of Pensieve. Another possible reason is that, for
most network conditions in the Puffer dataset, the ABR
algorithm can blindly pick the chunk with the highest bitrate
if the current measured throughput is significantly sufficient
for downloading all bitrate levels [2]. Hence, recent RL
technologies lack sufficient generalization abilities to handle
such a “large” action space, i.e., 13 bitrate levels, which is
2× larger than the original version [11] A2BR can solve this
issue via learning environments in situ.

4) Deep dive: Upon analyzing the advantage of A2BR , we
investigate the lower bound of the proposed scheme, i.e., in
which scenario that A2BR performs worse than we expected?
Figure 9 shows two bad cases of A2BR . Case A (Figure 9(a))
indicates that A2BR doesn’t reach the best QoE among all
ABR algorithms. Similar to user No. 897 in Figure 7, the ABR
algorithm only needs to take the current buffer as the input to
control such networks, since its network throughput is highly
variable, which has negative impacts on QoE. A2BR cannot
learn such a complex logic in rather few-shot. Moreover,
Case B (Figure 9(b)) shows a good network condition, as
most ABRs achieve maximum QoE. A2BR keeps exploring
environments during the online phase, which may lead to the
fair but not the best performance.

D. Case Study: 4G and 5G
In this part, we set up an experiment to understand how

A2BR performs in different wireless networks such as 4G
and 5G, and how about walking or driving in those networks.

1) Network and Video Settings: We take the Lumos5G
dataset [21], containing 121 5G and 175 4G throughput traces,
collected at 1-second granularity. As suggested by [56], we
formally categorize the network conditions into 4 types, i.e.,
4G with walking, 4G with driving, 5G with walking as well
as 5G with driving. Considering the wide range of 5G’s
bandwidth, we use a 4K video encoded as {20, 40, 60, 80,
110, 160}Mbps [57]. Motivated by the prior study [56], we
also modify the QoE metric µ = 160, σ = 1, where µ is often
set as the maximum number of bitrate levels of the 4K video.
Here we configure the maximum buffer occupancy as 60
seconds. Same as §V-B, we take Comyco [14] as the baseline.
Note that Comyco is retrained with the aforementioned QoE
objective. Besides, considering that the general linear-based
reward function (Eq. 1) might hardly map the actual QoE for
4K videos [23], [56], we leverage a more realistic QoE model,
i.e., ITU-T Rec. P.1203 [55] for evaluating the performance.
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Fig. 10. Comparison of average normalized bitrate and stall ratio in 4G and 5G. Error bars show 95% confidence intervals.

TABLE III
QOE PERFORMANCE COMPARISON OF DIFFERENT ABR ALGORITHMS. RESULTS ARE CALCULATED BY ITU-P.1203 [55].

Alg.
4G 5G All

O.23(↑)
(Stall)

O.35(↑)
(Visual)

O.46(↑)
(Overall)

O.23(↑)
(Stall)

O.35(↑)
(Visual)

O.46(↑)
(Overall)

O.23(↑)
(Stall)

O.35(↑)
(Visual)

O.46(↑)
(Overall)

BOLA 1.67±0.66 2.16±0.57 1.47±0.27 3.87±0.69 4.43±0.61 3.68±0.71 2.57±1.27 3.09±1.26 2.37±1.20

RobustMPC 2.01±0.66 2.14±0.69 1.56±0.28 3.97±0.76 4.40±0.59 3.74±0.71 2.81±1.19 3.07±1.29 2.45±1.18

Pensieve 1.44±0.44 2.18±0.78 1.43±0.16 3.32±1.24 4.71±0.29 3.44±0.96 2.21±1.26 3.21±1.39 2.25±1.17

Fugu 2.44±0.85 2.08±0.66 1.62±0.32 4.02±0.61 4.41±0.69 3.76±0.70 3.09±1.09 3.03±1.33 2.50±1.17

Comyco 2.24±0.75 2.29±0.60 1.72±0.34 3.44±1.03 4.58±0.45 3.47±0.84 2.73±1.06 3.34±1.16 2.43±1.04

A²BR 3.35±1.03 2.46±0.28 2.04±0.44 4.48±0.20 4.11±0.54 3.78±0.47 3.81±0.98 3.13±0.91 2.75±0.97

2) Bitrate-Stall Analysis: We summarize the experimental
results according to the relationship of stall time and normal-
ized bitrate, in which the normalized bitrate is computed as
Rk

160 . Notably, results show that our proposed BOLA performs
much better than the results of the previous work [56] (2% vs.
5% on stall ratio). Due to the minor incorrect settings in terms
of the experimental setup 1, we have re-evaluated BOLA with
tuned parameters to achieve the best average performance
across all network traces.

Figure 10 reports the comparison results of existing ABRs,
including heuristics and learning-based schemes. Recall that
A2BR is only tuned for 20-shot. We see that A2BR can pro-
vide outstanding performance in terms of high video bitrate
and low stall ratio. Specifically, Figure 10(a) demonstrates
that A2BR outperforms heuristics on the average bitrate of
2.9%-6% and average stall reduction of 42%-70%. One of
the underlying reasons is that the bitrate ladder provided by
the 4K video is not adequate for 4G networks. Commonly,

1See details in https://github.com/SIGCOMM21-5G/artifact/issues/8

the average bandwidth of 4G networks is lower than 40Mbps,
while most bitrate levels are larger than the average band-
width. To this end, how to construct a proper bitrate ladder
for different network conditions is an interesting topic but out
of scope here [58]. We will jointly consider the bitrate ladder
construction and ABR implementation in future work.

Figure 10(b) and 10(c) show that A2BR increases the
bitrate by 2%-5% and heavily reduces the stall ratio by 6%-
23% compared with state-of-the-art ABR Fugu [2] in the
4G scenario. Furthermore, Figure 10(d) shows a significant
performance gap between the recent ABR scheme and A2BR
, since recent work suffers from either low video bitrate (e.g.,
BOLA and RobustMPC) or high stall ratio (e.g. Pensieve and
Comyco). From Figure 10(f) and Figure 10(e), we find the
same conclusion of prior work [56]: NN-based ABR scheme
such as Pensieve and Comyco fails to maintain the high
performance in 5G network scenario because they often suffer
from very high stall ratio. In contrast, the aforementioned
situation has been rectified by A2BR : it shows a significant
decrease (i.e., 69% and 80% on average) of video stall in
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Fig. 11. Comparing A2BR with existing QoE-driven ABR algorithms on HSDPA and FCC networks traces. Results are normalized against the performance
of Pensieve. The error bars show std from the average. We consider three types of QoE metrics that described in §V-E2.

driving and walking scenario compared to Pensieve, as the
average bitrate of it only performs 2%-4% lower than that of
Pensieve. Such decreases are indeed acceptable because each
algorithm performs with the normalized bitrate of at least 0.9
in 5G scenarios.

3) ITU-T Rec P.1203 QoE Analysis: In addition, we cal-
culate an estimated MOS for each video session via ITU-T
P.1203 QoE model [55]. As suggested by previous work [59],
we use mode 0, which fully considers 6 metrics, such as
selected bitrate, video codec, video resolution, frame rate,
starting time of stall events, and stall duration. During the
evaluation phase, we record the detailed playback behavior for
each chunk and ABR algorithm. Then we feed the playback
logs to ITU-T P.1203 Standalone Implementation 2 and obtain
the final MOS scores. To better understand the quality from
different perspectives, we take 3 MOS scores, involving
i) O.23, indicating perceptual stalling indication; ii) O.35,
meaning visual coding quality score for the entire session;
iii) O.46, representing media session quality score, aka. final
QoE score. All the MOS scores are computed as a single
score on a 1-5 quality scale. The comprehensive instruction
of ITU-T P.1203 can be found in [19].

Table III reports the detailed comparison results of A2BR
and existing ABR algorithms over 4G and 5G network
conditions, where the values are depicted as avg.±std.. There
are three key takeaways from these results. First, we find that
A2BR either rivals or surpasses the performance of the best
existing ABR algorithm on each MOS score and network
considered. Especially, in comparison to the closest com-
petitive scheme Fugu, A2BR provides 10.0% (4G: 25.93%,
5G: 0.53%) on average O.46 score (i.e., overall QoE score).
In our opinion, A2BR obtains its outstanding performance
since it pays more attention to avoiding stalls, as it improves
23.3%-72.4% on average O.23 score (i.e., overall stall score)
compared with baselines.

Second, A2BR not only reaches the best average perfor-
mance but also attains the lowest variance with an average
O.46 score compared to existing ABR schemes. Here the key
reason is that A2BR prefers smooth rate adaptation rather
than requesting chunks with the highest bitrate level (e.g.
Pensieve). Particularly, Comyco reaches second place in terms

2https://github.com/itu-p1203/itu-p1203

of QoE variation (1.04), but it only ranks fourth on average
QoE (2.43) among 6 candidates. Compared to the best scheme
A2BR , Comyco should focus on reducing the stall ratio in
5G network conditions. A strawman solution is to set the
rebuffering penalty as a larger value, e.g., µ=320. However,
the increased rebuffering penalty also leads to the more
conservative bitrate selection strategy on the 4G network.
Thus, the better solution for Comyco is to follow A2BR
, i.e., learning policies with different network conditions
separately (§III-B).

Finally, to our surprise, we observe that Pensieve performs
poorly on O.46 score, even though it stands for the worst
scheme among all ABR schemes. This is because Pensieve
obtains the lowest score on O.23 (i.e., stall). Such results
indicate that the distribution shift effect is positively mislead-
ing the algorithm to local optima [60]. A2BR performs well
over all networks considered since it can continually learn the
strategy to vary current network environments.

E. Case Study: Varying User Preference

Previous experiments assume that the QoE of a user is
roughly even with the others [8], [11], [14], [2]. Based on the
assumption, traditional ABRs are optimized toward a fixed
QoE model, and these approaches will perform poorly if the
QoE metric is changed [12]. However, recent studies argue
that QoE preferences vary with users because each user has
their viewing interests. Hence, the ABR algorithm should be
optimized by considering QoE diversity. In this part, we try to
answer: can A2BR also tame the complexity of various QoE
preferences in relatively few-shot?

1) Enhancement for multiple QoE preferences: We con-
sider two enhancements to the training algorithm which en-
able A2BR to better understand QoE preferences. The detailed
modification is described in Figure 11(a). The first change
is that we incorporate QoE parameters µ, σ into the state
representation. During training, for each session, we randomly
reset the parameters and obtain the reward score according to
the selected parameters. Second, we apply a fully-connected
layer with 64 neurons to the A2BR ’s NN for extracting the
high-dimensional features from the QoE parameters.

2) Experimental settings: At the offline stage, we train
A2BR via Pensieve training dataset [62]. At the online stage,
we continually train the meta-policy over the traces which
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(b) Real-world experiments: public WiFi.
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(c) Real-world experiments: wired network.

Fig. 12. Performance of A2BR and recent ABRs in Dash.js. Results are reported as normalized QoE (QoE / QoEmax).

are randomly selected from the HSDPA and FCC datasets.
Training time lasts 20-shot. In light of MPC’s evaluation
settings [8], we compare the performance of ABR algorithms
under 3 sets of QoE weights: i) “Default” (µ = 4.3, λ = 1),
ii) “Conservative” (µ = 8.6, λ = 1), and iii) ”Stable” (µ =
4.3, λ = 4.3). In this experiment, RobustMPC is optimized
by the actual QoE preference. We adopt Pensieve as the pre-
trained model that trained with the default QoE set.

3) Effectiveness analysis of A2BR : Figure 11 provides a
summary to illustrate the average normalized QoE that each
scheme achieves on HSDPA and FCC datasets. As expected,
A2BR efficiently learns the individual QoE requirements and
outperforms ABR approaches: it rapidly obtains 5.1% QoE
gains over HSDPA and 5.0% QoE gains over FCC compared
with A2BR-meta (i.e., the initial meta-policy of A2BR ) in
20-shot. Moreover, another observation is that heuristics like
RobustMPC fails to handle all QoE preference settings. Es-
pecially in the “Stable” QoE set, RobustMPC never picks the
chunk with the highest bitrate during the entire session. We
reason that RobustMPC solves a QoE maximization problem
over a horizon of only 5 future chunks. While due to the large
penalty from switching bitrates (i.e., 4.3), the best trajectory
that MPC planned seldom contains any bitrate changes. Widen
the prediction horizon can not perfectly solve the problem for
MPC since its sensitivity to throughput prediction errors and
the length of the optimization horizon [8], [11]. It proves that
there’s still plenty of room for improvement by developing
outstanding planning/decision strategies for heuristics. One of
the possible ways is to joint deep learning and model-based
planning method for accurate decision [63]. In addition, we
can see that Pensieve performs poorly except for the default
QoE set (µ = 4.3, σ = 1.0) because it is trained via a fixed
QoE objective. Thus, Pensieve can not adjust itself to various
objectives such as the “Conservative” and “Stable” sets.

F. Real-world Deployment

We establish a full-system implementation to evaluate
A2BR and other ABR approaches on Dash.js [4]. Specifically,
the system consists of a video client, a video server, and
an A2BR decision server. For each chunk, the video client
reports all the features like a state to the A2BR decision
server. The decision server then sends the bitrate level back
to the client. The client requests the chunk from the video
server with the bitrate level suggested by the decision server.

When the session ends, the decision server starts to restore
the network traces from previously collected states, then it
virtually rolls out several trajectories using a virtual player,
and updating the NN according to the “real” and “fake”
trajectories (see §IV-C). The network condition is configured
by Mahimahi [61] with the randomly selected traces from
HSDPA dataset [20]. We adopt TCP-BBR [64] as the basic
TCP congestion control algorithm and repeatedly replay the
videos named EnvivioDash3 [4] with all the evaluated ABR
algorithms over all considered network conditions. We report
the average “learning curve” of A2BR for each video session.
Figure 12(a) shows the performance of A2BR and existing
ABR schemes (i.e., Pensieve and RobustMPC) in the emula-
tion environment, we see that A2BR (i.e., meta policy) per-
forms worse than Pensieve and RobustMPC at the beginning
of the online stage. After playing the video 8 times, A2BR
suddenly learns the better policy that matches the behavior
of baselines. After that, we see that A2BR incrementally
improves itself to achieve the best results among candidates,
i.e., Pensieve: (7.8%↑) and RobustMPC: (8.5%↑).

Furthermore, we conduct a real-world experiment over two
representative network scenarios, including public WiFi and
wired network. We apply the video client and A2BR server
on the laptop (MacBook Pro, 64GB RAM), and establish a
video server on the AWS. For the first experiment, we connect
a public WiFi and repeatedly play the video 20 times. Results
are shown in Figure 12(b). Notably, this scenario is a typical
network condition over which the basic network “trace” is
dynamically changed rather than fixed during the phase.
Different from the results in the emulation tools, we find that
Pensieve’s conservative policy leads to poor generalization
ability: it doesn’t work well on networks dissimilar to the
networks it has trained on [65], [2]. A2BR , trained 20
times, outperforms other ABR algorithms on average QoE
improvements of 9.6% (RobustMPC) and 12.8% (Pensieve),
which yields the effectiveness and generalization capacity.

The second real-world experiment is established over the
wired network, where the average bandwidth is always suf-
ficient for picking the chunk with the highest bitrate. We
demonstrate the results in Figure 12(c) and find that Pensieve
still exhibits the worst behavior because it performs like
running on slow-path networks. By contrast, RobustMPC
runs perfectly well in the high throughput and low variance
network conditions. Unfortunately, we can find that A2BR
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1-step MPC NN

CPU(%) 12.79±0.94 14.60±1.11

Memory (MB) 79.38±0.8 97.92±0.85

Inference (ms) - 0.77±0.91

Energy (/h) 12.68% 12.85%

Fig. 15. Comparing performance of 1-step MPC and NN-based
ABR algorithm. The results contain CPU, memory consumed,
inference time, and energy cost.

’s performance is continually enhanced by 5.6% but fails to
reach the optimal score after 20 trials. The reason is similar
to the fact that we have figured out in §V-C4: A2BR is
incrementally improved by encouraging exploration, which
might heavily influence the ABR performance.

VI. ABLATION STUDIES

A. Choice of Meta-learning Methods

We make a comparison of A2BR with different meta-
learning strategies, such as Pearl [66], Reptile [67] and
FedAvg [68], and the vanilla RL training methodology [11].
Pearl is an off-policy meta-RL algorithm that takes proba-
bilistic embeddings to determine the latent embedding of the
current environment. Considering A2BR is working in the
discrete action spaces (§IV), we use double Q-learning [69]
as the Pearl’s RL training method. In the offline training stage,
the latent embedding is directly estimated by the average and
standard deviation throughput of the entire session. While
in the online stage, the embedding is computed from the
throughput observed of the past five chunks. Reptile is one
of the meta-learning algorithms which repeatedly samples a
task, training on it, and updating the initial parameters towards
the parameters learned on that task. In addition, recent work
reveals that FedAvg and Reptile are quite similar to each other
since FedAvg can be viewed as a special case of Reptile if the
learning rate equals 1 [70], [71]. Hence, we treat FedAvg as
a linear combination of a naive baseline. We evaluate ABRs
on the same validation set every 300 epochs and report the
learning curve in Figure 13. A2BR trains faster and performs
slightly better than others. Comparing A2BR with Pearl, we
find Pearl typically converges quickly because Pearl works
based on a sample-efficient off-policy method. However, it
fails to obtain better final performance compared with on-
policy meta-RL A2BR . What’s more, compared to Reptile,
both the convergence speed and final performance of A2BR
are significantly improved, which indicates the effectiveness
of the offline stage. To sum up, MAML is the most suitable
method among existing meta-RL algorithms for our work.

B. Choice of Different Rollout M and Learning Epochs

The higher M indicates better sample efficiency since
most trajectories will be sampled from the virtual player
and the environment collector. However, it also brings out
the risk that too many virtual trajectories may be overkill

TABLE IV
A2BR WITH DIFFERENT ROLLOUT M

Infer. (KFLOPS) M=5 10 20 100
11.3 123.9 208.4 377.4 1729.0

for meta updating. We compare A2BR with different rollout
times M , which includes {0, 5, 10, 20, 100}, over the Puffer
dataset. Note that A2BR doesn’t use the virtual player for
improving learning efficiency when M = 0. In other words, it
reflects the performance of using MAML solely at the online
stage. The results of training A2BR in 100-shot are shown
in Figure 14. We leave three notes here. First, A2BR reaches
the best performance when M=100. However, it takes 5× on
computational overhead but only improves less than 1% on
average QoE compared with M=20. Thus, we confirm that
M=20 is a sufficient parameter setting for the online stage.

Second, compared to Pensieve which doesn’t adopt meta-
policy techniques, we see that A2BR (M=20) consistently
improves the performance by 6% in 10-shot, 7.8% in 20-shot,
but only 8% in 50-shot. Such minor improvements (i.e., 0.2%)
between 20-shot and 50-shot motivates us to continually train
A2BR in 20-shot at the online stage.

Finally, we find that A2BR with M=0 obtains 3.5%
improvements on average QoE compared to Pensieve in
20-shot. It proves that A2BR can also provide acceptable
improvements without using a virtual player to replay the
environment experienced. Unfortunately, it only gains 4%
improvements compared with Pensieve in the next 50-shot,
which is indeed a minor improvement compared with using
virtual play technologies.

C. Computational Cost for Online Learning

We follow the calculation method described in [72] and
compute the number of floating point operations (FLOPs) of
A2BR on both inference and backpropagation operation [73]
in Table IV. A2BR with M=100 takes almost 5× com-
putational overhead compared with M=20. Hence, we set
M=20 for balancing the trade-off among the sample effi-
ciency, model accuracy, and computational cost. Most notably,
this cost is rather small, only 0.86% of the consumption
inferred by the state-of-the-art image recognition model Mi-
croNet [74].
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Moreover, we deploy the NN model of A2BR to the
mobile phones to investigate whether A2BR can work well
or not. In detail, we adopt an Android phone named Huawei
P20, with 128GB of internal storage and 4GB of RAM. We
modify Kuaishou’s production video player to support NN
inference via a self-developed NN tool, namely YCNN (a
Tensorflow-Lite [75] like NN API). Figure 15 demonstrates
the performance of two ABR schemes, i.e., 1-step MPC and
NN-based scheme, in which these two schemes have been
performed in the same video and network environment for
at least two hours. The NN-based scheme uses the same
architecture of A2BR , and it only makes inference instead of
continual learning. As shown, we can see the energy cost of
the two schemes is quite similar. Meanwhile, the NN-based
scheme runs slightly higher than 1-step MPC in terms of CPU
utilization and memory consumed. Such minor costs have
negligible impacts on today’s mobile phones [76]. Moreover,
the extra-low overhead on inference time proves that applying
sophisticated feature engineering is useful for both meta-
learning and online deployment.

VII. RELATED WORK

In this section, we summarize recent ABR algorithms.
Existing ABR algorithms are generally categorized into three
types: heuristics, learning-based, online-learning based, and
preference-aware ABR approaches.
Traditional ABRs: Heuristic-based ABR methods often
adopt critical features or domain knowledge, such as through-
put prediction (E.g., FESTIVE [6] and PANDA [77]) and
buffer occupancy control (E.g., BBA [7] and BOLA [51]),
for choosing the proper bitrate for the ABR task. However,
such approaches require accurate bandwidth estimation or
suffer from long-term bandwidth fluctuation problems. Then,
MPC [8] picks the next chunks’ bitrate by jointly considering
throughput and buffer occupancy. Nevertheless, MPC is sen-
sitive to its parameters since it relies on well-understanding
different network conditions. To deal with the aforementioned
shortcomings, Oboe [10] is an auto-tuning method to tune the
traditional heuristic methods to achieve better performance in
different network settings. Moreover, in the live streaming
field, MultiLive designs a quality model and proposes a rate
adaptation algorithm for multi-party scenarios [78]. However,
such heuristics will perform unstable if the current network
condition doesn’t meet the presumptions of the fundamental
principle of the proposed ABR algorithm.
Learning-based ABRs: By contrast, learning-based schemes
take raw observations as the input, aiming to train a NN from
the clean slate via various learning methods, such as imitation
learning [14], A3C [11], PPO [23], and ACKTR [79]. For
example, Mao et al. [11] propose Pensieve, which leverages
the deep reinforcement learning (DRL) method to generate
a strategy towards higher reward feedback, in which the
reward function is represented as the simple weighted sum
of bitrate, rebuffering, and smoothness. Bentaleb et al. [59]
propose AMP that encompasses techniques for bandwidth
prediction and model auto-selection, which is specifically
designed for low-latency live steaming with chunked transfer

encoding. Stick is a fusion approach that fuses the learning-
based and the conventional buffer-based approach [12] for
not only achieving higher performance but also reducing the
computational overhead. Moreover, to make the learning-
based ABR scheme more practical, Meng et al. [80] proposes
Pitree to distill the ABR policy into a decision tree-based
model. Meanwhile, Lumos [81] leverages the regression tree
for accurate throughput prediction, leading to better QoE
performance. Such approaches are trained or optimized in
the offline setting, that is, using a fixed network distribution.
Nevertheless, they fail to perform well if the online network
distribution is different from the training set.
Online-learning based ABRs: Several online-learning-based
ABR schemes have been proposed in recent years. OnRL [41]
adopts federated learning to continually update its strategy for
real-time communication. Oboe [10] and Puffer [2] dynami-
cally update the configuration map or NN model according to
current bandwidth capacities periodically. L2A-LL [82] uses
Online Convex Optimization (OCO) to make decisions for
low-latency live streaming. However, recent work failed to
consider a personalized network environment with the fast
adaptation requirement.
Preference-aware ABRs: Elephanta [83] is the first QoE
diversity perception approach for edge clients by adjusting
the parameters during the session. Elephanta models the video
streaming process as a renewal system, which enables it to
adapt to QoE diversity online. DAVS [84] is an imitation
learning-based approach that considers the user’s viewing
preference for making the method adapt to the QoE diversity.
Zuo et al. [85] propose Ruyi, an off-policy RL-based video
streaming system that incorporates preference awareness into
both the QoE model and the ABR algorithm. Ruyi is opti-
mized by a variant of the Deep Q-learning algorithm with the
experience replay technique [86]. However, recent schemes
lack the ability to fast adapt to specific QoE preferences.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed A2BR , a novel meta-RL ABR approach
to fast adapts the personalized network conditions. We divided
the training process into two stages, aiming to meta-train an
initial model in the offline stage, and continually leveraged
domain knowledge to adapt tailor-made networks within few-
shots in the online stage. Experimental results on several
representative network scenarios revealed that A2BR can
quickly generate tailor-made policies within 20 shots.

In this work, we only discuss the performance of A2BR in
the VOD (video on demand) scenario, where the maximum
buffer size is often set above 30 seconds. While another
popular streaming scenario is the live streaming scenario, in
which the buffer occupancy is considered as a penalty, often
sized below 3 seconds. Ideally, deploying A2BR in live (or
low latency) streaming scenario is quite challenging, since
i) measuring throughput becomes tough due to the application
limit [87], ii) we should design the decision algorithm by
considering lower playback buffer size [88], [89], and iii) the
lack of a faithful packet-level simulator rather than frame-
level solution [90] for live streaming. We plan to investigate
A2BR in the live streaming scenario in future work.



17

Furthermore, we also believe that A2BR sheds light on
improving similar input-driven MDP (IMDP) tasks, such
as internet congestion control algorithms [33], schedul-
ing/offloading algorithms [42], [91], and so on. In these tasks,
an exogenous yet stochastic input process often affects the
dynamics of the system as well. For example, for congestion
control algorithms, heuristics like TCP-BBR and TCP-Cubic
can’t always perform well under all considered scenarios.
Here A2BR is a suitable scheme that allows the control
strategy to adapt to the environment faster.
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