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ABSTRACT
Short video uploading service has become increasingly important,

as at least 30 million videos are uploaded per day. However, we

find that existing congestion control (CC) algorithms, either heuris-

tics or learning-based, are not applicable for video uploading–i.e.,

lacking in the design of the fundamental mechanism and being

short of leveraging network modeling. We present DuGu, a novel
learning-based CC algorithm designed by considering the unique

proprieties of video uploading via the probing phase and internet

networking via the control phase. During the probing phase, DuGu
leverages the transmission gap of uploading short videos to actively

detect the network metrics to better understand network dynamics.

DuGu uses a neural network (NN) to avoid congestion during the

control phase. Here, instead of using handcrafted reward functions,

the NN is learned by imitating the expert policy given by the op-

timal solver, improving both performance and learning efficiency.

To build this system, we construct an omniscient-like network em-

ulator, implement an optimal solver and collect a large corpus of

real-world network traces to learn expert strategies. Trace-driven

and real-world A/B tests reveal that DuGu supports multi-objective

and rivals or outperforms existing CC algorithms across all consid-

ered scenarios.

CCS CONCEPTS
• Networks→ Network control algorithms.
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1 INTRODUCTION
Recent years have seen a rapid increase in short video services,

as users upload almost 30 million User Generated Content (UGC)
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videos to Kuaishou every day [41]. Different from existing trans-

mission services, short video uploading contains several unique

processes, such as pre-transcoding and segmentation-based trans-

mission, bringing new challenges to the Internet congestion con-

trol (CC) algorithm. (§2.1)

Internet CC algorithms have already been proposed for three

decades [43]. It dynamically adjusts the sending rate to avoid con-

gestion events for better stream transmission on the Internet. Off-

the-shelf heuristics leverage packet loss and latency [8, 38] as the

signals and dynamically controls the sending rate or congestion

window (cwnd) to achieve high throughput while avoiding conges-

tion [10]. While the network environments are becoming complex,

it’s reasonable to embrace machine learning techniques to design ef-

fective CC algorithms [43]. Following this insight, several attempts

have been made to adopt deep reinforcement learning (DRL) to

generate policies from clean slates, achieving outstanding perfor-

mances across various network conditions [3, 4, 16, 22, 48, 52].

Nevertheless, we empirically show that recent CC algorithms

are not fully applicable to the short video uploading task. On the

one hand, most learning-based CC algorithms heavily rely on the

design of reward functions. While such carefully designed reward

functions not only fail to guide the NN to learn the proper mech-

anism but also often lead to unstable behavior in terms of the

learned policy. In other words, we have to learn policies from an-

other perspective. On the other hand, prior CC algorithms fail to

capture the fundamental characteristics of the video uploading task.

Meanwhile, they also neglect the importance of domain knowledge,

which estimates the optimal policy inaccurately. (§2.2)

In this work, we propose DuGu1, a novel learning-based CC al-

gorithm for short video uploading tasks. Different from previously

proposed methods [3, 48], DuGu “mimics” both expert mechanisms

and policies by two phases. First, at each decision time, DuGu adopts
a NN to determine the congestion window size (cwnd) for the next

period in the control phase, aiming to send the packets with high

throughput and low latency. Second, DuGu follows the principle of

heuristics [8, 11], as it actively detects networks if the segment has

not been generated in the probing phase. DuGu drains the queue to

catch the minimum RTT periodically. Such operation can not only

adapt to the network changes but also provide fresh network met-

rics to help improve the accuracy of the neural network (NN) policy.

Moreover, it’s also a feasible way to enhance the fairness [11]. (§3.1)

To better execute the policy in the control phase, we propose an

imitation-learning-based training framework to train DuGu’s NN.

1DuGu (Nine Swords of Dugu): a sword skill in Chinese wuxia novel The Smiling, Proud
Wanderer [49]. DuGu doesn’t follow any fixed sequence or pattern, which allows the

swordsman to quickly identify the weaknesses in the moves executed by an opponent.
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Figure 1: Short video uploading system.
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(a) Best convergence behavior.
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(b) Worst convergence behavior.
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Figure 2: Examining learning-based algorithms over the same changeable
networks. Error bars span ± one standard deviation from the average.

Imitation learning is an essential tool where an agent can expect to

learn a policy with a slight regret w.r.t the expert [53]. Unlike re-

cent model-free RL-based schemes [22, 52], DuGu is learned with the
guidance of the expert policy, where the policy is represented as the
Kleinrock’s optimal operating point [25]. We design an omniscient-

like network emulator and an optimal solver to obtain the point

overall considered networks effectively, including time-varying

networks. More specifically, given a network condition constructed

by randomized network metrics, the learning agent adopts the

omniscient-like network emulator to sample the trajectory w.r.t

the NN policy. Meanwhile, it uses the optimal solver to instantly

estimate the expert policy for each state and store the state-expert

pair in the replay buffer. Consequently, the NN is faithfully opti-

mized the NN via experience replay technologies. At the same time,

inspired by recent multi-objective CC approaches [27, 28, 46, 51],

we extend DuGu to support multi-objective requirements. (§3)

To make DuGu practical, we compare DuGu with twelve state-of-

the-art CC algorithms and conduct a step-by-step evaluation pro-

cess (§4): i) basic performance analysis indicates that DuGu achieves
high throughput and low latency with different network conditions,

such as varying stochastic loss rate, delay, buffer size, and band-

width. ii) trace-driven emulation proves that DuGu improves the

average power95 by 25.84%-30× compared with heuristics. More-

over, DuGu enhances the average throughput by 21.2%-131.59% and

reduces the average 95-percentile delay of 1.3%-53.02% compared

with learning-based algorithms. iii) in the “small scale” real-world

experiments, DuGu obtains the highest Power95 [26] score among

all baselines. iv) large-scale A/B testing illustrates the superiority

of DuGu over the existing industry baseline. v) DuGu well supports

multi-objective settings and demonstrates its fairness and friendli-

ness with low computational overhead. In general, we summarize

the contributions as follows:

• We first introduce short video uploading and highlight the

short-coming of directly applying existing CC algorithms to

that task.We then provide a feasible imitation learning-based

solution to overcome such weaknesses. (§2)

• We propose DuGu, a novel learning-based that mimics both

mechanism and expert policy. Meanwhile, we develop a train-

ing framework containing an omniscient-like network simu-

lator to provide the expert policy precisely. (§3)

• We conduct comprehensive experiments, from basic perfor-

mance analysis, trace-driven emulation to real-world A/B

testing, to validate the performance of DuGu. Results demon-

strate the superiority of DuGu across various experimental

settings. (§4)

2 BACKGROUND AND MOTIVATION
2.1 Background and Related Work
Unlike live streaming uploading approaches [12, 23], the traditional

short video uploading system is described in Fig 1, which consists

of a client-side and a server-side. The users use a client-side App,

often placed on a mobile (e.g., Kuaishou [1] and TikTok ([2]), to

record a short video (i.e., a video that is 10-60 seconds in length [55])

and upload the video to their account. The recorded raw video is

pre-transcoded at the high bitrate by the native encoder, where the

additional operations contain dehazing, deraining, video enhance-

ment, etc. Once the video has been encoded above a threshold (e.g.,

1 MB), the encoded segment will be pushed into the segment queue

and wait for the sender to transmit it to the server. The sender

employs congestion control (CC) algorithms to adapt to various

network conditions on the Internet according to the information

acked by the receiver. The receiver emits the video to the transcod-

ing server upon receiving all the segments. The server transcodes

the video into several bitrate levels and pushes the encoded videos

to multi-CDN. Users watch videos from the CDNs.

The most critical module of the video uploading systems is the

congestion control algorithm, a historical yet classical topic that

has been proposed for about three decades [43]. Heuristics often

perform well in some situations but may backfire in others. For

example, BBR [10] increases the data in flight (data sent but not
yet acknowledged) to detect the bottleneck size and adjust the

sending rate w.r.t the estimated bandwidth-delay product (BDP).

Nevertheless, such operations obtain high throughput but may

cause high queueing delay or even congestion. Another delay-based

CC algorithm Copa [8] sends packets conservatively towards the

target latency, which sometimes fails to achieve high link utilization.

To copewith these issues, researchers have proposed learning-based

CC algorithms, which ushered in a renaissance with the increase

of deep learning technologies [3, 4, 16, 22, 48] – these approaches

understand the control policy from clean slates and generalize well

across a wide range of network conditions [50]. One of the most

successful methods is deep reinforcement learning (DRL) since its

capabilities to learn from fresh raw data and without relying on

handcraft engineering [3].

2.2 Motivation
Unfortunately, existing CC algorithms are only “partially” suitable

for the video uploading task. To prove this, we conduct a simple

experiment to verify the convergence behavior of several CC algo-

rithms. The experiment is done by Pantheon [48], with the network
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bandwidth changed every 5 seconds, minimum one-way delay as

30ms, stochastic loss as 0%, and 500 packets queue. We repeatedly

test each algorithm five times. Results are reported as convergence

behavior for each scheme and the relationship between throughput

and 95% one-way delay in Figure 2. Here are some key findings.

Unstable behavior. Both bandwidth-delay product (BDP) and

minimum RTT are changing over time in practice, while there’s

no efficient way to measure such contradicted network metrics

synchronously. Thus, learning-based schemes often adopt specific

reward functions to learn the specific rules or domain principles. For

instance, Orca [3] integrates a bag of tricks into the reward function,

aiming to implicitly enforce the agent to detect minimum RTT

periodically like BBR [11]. Eagle [16] even enormously employs five

reward functions to separate the CC policy into different BBR-like

phases. Unfortunately, such a complex reward setting does obtain

good performance, but it also brings out unstable behavior. There

is a huge gap between the best and the worst convergence behavior

of Aurora and Orca. By contrast, the typical scheme BBR is always

on the right track since it leverages a simple yet effective scheme,

namely RTT probing phase, to detect changeable networks [8, 10].

Hence, instead of utilizing “cumbersome” and handcrafted reward

functions, what about effectively learning the CC algorithm from the
omniscient?
Insufficient usage of domain knowledge. Moreover, recent CC

schemes run in the transport layer fail to perceptualize the spe-

cific knowledge of the current task. While in this work, we find

an opportunity to actively detect the network dynamics when the

sender-side has no data to be sent. Moreover, recent work reveals

that the Internet network model has stronger practical reference sig-

nificance [8, 32, 48]. Based on this domain knowledge, Indigo [48]

mimics the expert policy given by the Pantheon’s emulator. How-

ever, Figure 2(c) shows that Indigo [48] does learn some correct

policies from the domain knowledge while it still lacks solid perfor-

mance. The key reason is that Indigo is only learned with very few

types of network links, such as fixed bandwidth and stable latency

environment. It’s tough to enable Indigo’s network emulator to sup-

port complex environments such as jitter links and time-varying

networks [17]. To that end, how to construct a unique mechanism for
varying video uploading tasks? How to design a solution to estimate
expert policy for all considered environments?

In summary, existing CC schemes lack either sophisticated mech-

anism engineering or making full use of prior knowledge to infer

the expert action. We, therefore, propose DuGu, a novel learning-
based CC algorithm to solve the above challenges. In brief, DuGu
is designed by considering the feature of the short video upload-

ing task and mimics the expert actions for different kinds of net-

works. Figure 2 illustrates that DuGu performs stable, achieving high

throughput with low latency.

3 DUGUMECHANISM
3.1 Big picture
In light of the characteristics of video uploading tasks, we propose

DuGu, a novel learning-based CC algorithm. We model DuGu’s con-
trol process as a finite state machine (FSM) as shown in Figure 3,

which is mainly composed of thecontrol phase and the probing phase.
Here the states and transitions of FSM are explained as follows:

1○ Control phase. When the sender-side receives an ACK (ac-

knowledgment) packet from the receiver side, FSM will be transited

into the control phase. The sender analyzes useful network metrics

from the ACK packet and updates the current state. At the same

time, if the duration since the last decision time exceeds 100 millisec-

onds, the NN will take the current state as the input and estimates

the proper action to adjust the congestion window size (cwnd).

2○ Probing phase. When there’s no data to be transmitted (i.e.,

App. limits the transmission process), FSM will enter the probing

phase. Technically, the sender stores the current cwnd and sets

the cwnd to a minimum value (i.e., 2) for draining the network

queue. At this time, it collects current RTT from the ACK packets

and updates the minimum RTT into the current state. Once the

segment has been encoded and ready to be sent (§2.2)), the sender

will immediately recover the cwnd to the previously stored value.

Moreover, inspired by the mechanism of recent heuristics [8, 11],

FSMwill be checked into the probing phase if the sender continually

transmits data for 10 seconds as well. After finishing the probing

phase, FSM enters the policy phase.

DuGu’s system workflow is depicted in Figure 4. Having analyzed

the primary mechanism of DuGu, we have to answer: how to learn
a good policy for the control phase? Assuming all network param-

eters are observable, i.e., the network emulator is omniscient, the

infinitive idea of finding the suitable policy is to compute the opti-

mal cwnd for each iteration instantly. Thus, DuGu directly mimics

the expert policy w.r.t the optimal action instead of maximizing

the handcrafted reward function. To achieve this, we design a spe-

cific training flow for DuGu in Figure 5, where it contains a NN, an

omniscient-like network emulator, and an optimal solver.

3.2 NN Overview
We explain the simple yet effective NN architecture as follows.

Inputs. At each decision time 𝑡 , we pick several representative

network information as a vector and take past 𝑘 sequences as the

state space 𝑠𝑡 (see in Eq. 1).

𝑠𝑡 = {𝑟𝑠𝑒𝑛𝑑𝑡 , 𝑟𝑟𝑒𝑐𝑣𝑡 , 𝑑𝑚𝑖𝑛
𝑡 , 𝑑

𝑞𝑢𝑒𝑢𝑒
𝑡 , 𝑙𝑡 , 𝑐𝑡 , 𝑑𝑢𝑟𝑡 , 𝜔}. (1)

Here 𝑟𝑠𝑒𝑛𝑑 is the sending rate. 𝑟𝑟𝑒𝑐𝑣 denotes the EWMA of the

receiving rate, which is calculated by the ACK (acknowledged)

packets. 𝑑𝑚𝑖𝑛 is the minimum observed latency (i.e., min. RTT).
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𝑑𝑞𝑢𝑒𝑢𝑒 is the estimated queuing delay w.r.t the current latency

and 𝑑𝑚𝑖𝑛 , i.e. 𝑑𝑞𝑢𝑒𝑢𝑒 = 𝑑𝑡 − 𝑑𝑚𝑖𝑛
𝑡 . 𝑙 is the packet loss rate. 𝑑𝑢𝑟

is the time interval since the last decision. All the above features

are represented by vectors with past 𝑘 sequences. 𝜔 is the multi-

objective parameter. We employ the EWMA method to smooth

sending rate, receiving rate, and queuing delay. We set the sequence

number 𝑘 = 8 to balance the trade-off between the performance

and overhead.

Outputs. Upon observing state 𝑠𝑡 , the agent outputs 𝑎𝑡 ∈ (−1, 1) to
adjust the sending cwnd 𝑐𝑡+1 for the next time slot 𝑡 + 1 via current
cwnd 𝑐𝑡 : 𝑐𝑡+1 = 𝑐𝑡 (1 + 𝑎𝑡 ).
Architecture. We adopt 1D-CNN layers with 64 features and

stride=1 to extract features for each metric and use fully connected

layers with 64 neurons to further merge the features. The NN out-

puts a single scalar using tanh activation function. The choice of

NN architectures will be discussed in §5.

3.3 Omniscient-like Network Emulator
Recall that we attempt to compute the oracle action 𝜋∗ (𝑠𝑡 ) accord-
ing to any state 𝑠𝑡 , where the action is estimated by optimal cwnd –

attaining Kleinrock’s optimal operating point, at which the total

data in-flight is equal to 1×BDP [25]. Finding such an optimal point

is challenging in both fixed and time-varying networks since it

requires obtaining arbitrary network metrics at any time at that in-
stant. However, existing black-box emulators, such as Cellsim [45]

and Mahimahi [32], are not applicable for this job because they

cannot provide critical information in real-time, including queuing

delay of each packet, the number of packets in the queue, the future

bandwidth capacity, etc. We design an offline packet-level emulator,

which can precisely replay the network environments w.r.t a satu-

rated trace and a list of network parameters, such as packet loss,

minimum one-way delay, jitter, and queue length (or buffer size).

The transmission process is composed of three parts: a loss mod-

ule, a delay module, and a link module. The loss module is used to

drop packets according to the given probability. The packet will

be scholastically dropped if the randomized number is less than

the given probability. The delay module emulates a link with a min-

imum one-way delay. The link module emulates a linked queue

using packet-delivery traces. Unlike existing network emulators,

all the metrics and variables in our proposed emulator are visible

to the users.

3.4 Optimal Solver
Moreover, we design and build an optimal solver to compute the

expert policy. The key idea of finding Kleinrock’s optimal operating

point is to obtain the actual link capacity for horizons of decision

interval 𝑑𝑢𝑟 . Different from prior work [48] which can provide the

expert policy for fixed networks only, We propose a two-phase pro-

cess to precisely know the link capacity with any form of network

traces, especially for time-varying networks. First, at decision time

𝑡 , we free the time and store all the network status to 𝑜𝑡 . We then

apply a virtual process to drain all packets, including the packets

in-flight and in the queue. Thus, we can obtain the time 𝑡 ′ that the
first sent packet is actually received by the receiver. Fasting forward
to the time 𝑡 ′, we then compute how many packets should be sent

from 𝑡 ′ to 𝑡 ′ +𝑑𝑢𝑟 , i.e., the “real” network link capacity. Finally, the

network status is reset to 𝑜𝑡 for executing the next step.

Moreover, motivated by recentmulti-objective CC approaches [27,

28, 46, 51], we enable DuGu to support multi-objective requirements

by integrating an importance weight 𝜔 , representing the target

queuing delay. DuGu achieves high throughput but causes high queu-
ing delay if we increase the 𝜔 . As suggested by prior work [45], we

set the target queuing delay 𝑞𝑡𝑎𝑔 as 100 milliseconds if 𝜔 = 1.0. In

this work, we set 𝜔 = 0.5 according to §5.

Putting them together, the target cwnd 𝑐𝑡 is summarized calcu-

lated using Eq. 2, where 𝑝𝑥 is packet count at time 𝑡 . The solver

outputs the expert action 𝜋∗ (𝑠𝑡 ), representing the relative distance

between the current cwnd and 𝑐𝑡 (Eq. 3).

𝑐𝑡 = (1 +
𝜔𝑞𝑡𝑎𝑔

𝑑𝑢𝑟
)𝑅𝑇𝑇𝑚𝑖𝑛

𝑑𝑢𝑟

∫ 𝑡 ′+𝑑𝑢𝑟

𝑡 ′
𝑝𝑥𝑑𝑥 (2)

𝜋∗ (𝑠𝑡 ) = 𝑐𝑙𝑖𝑝 ( 𝑐𝑡 − 𝑐𝑡−1
𝑐𝑡−1

,−1, 1) (3)

3.5 Training Methodology
We now introduce the training algorithm of DuGu, which is basically
implemented via imitation learning [33]. The imitation learning

method allows the NN to explore environments and mimics the

policy based on the expert policy. As listed in Eq. 4, the optimal

policy 𝜋 is optimized by minimizing the gap between the current

policy and the expert policy according to the same state observed.

𝜋 = 𝑎𝑟𝑔𝑚𝑖𝑛 E𝑠∼𝑑𝜋
[
𝑙𝑡 (𝜋𝑡 , 𝜋∗𝑡 )

]
. (4)

DuGu’s training procedure is described as follows. First, we ran-

domly pick network traces from the dataset with various network

settings, including minimum latency, jitter, loss rate, and buffer size.

Next, for each time slot 𝑡 , the agent receives the state and takes

action 𝑎𝑡 w.r.t the policy given by the NN. In the meantime, the

solver estimates expert policy 𝑐𝑡 and computes the relative gap

between action and expert. Here we adopt experience replay to

restore a batch of state-expert sample pairs to train the DuGu’s NN.
Finally, we continually produce the process till the training ends.

Experience replay. In light of the successes of recent off-policy

RL methods, we apply a replay buffer to train the useful samples

repeatedly to obtain better convergence behavior. During training,

we store the state-expert strategy samples into the replay buffer

and allow the agent to randomly picks the sample from the buffer.

DuGu trains with diverse samples for each iteration, significantly

improving sample efficiency.

Loss function. We use the squared-loss function between the

output 𝑎𝑡 returned by the NN and the expert label 𝜋∗ (𝑠𝑡 ) (Eq. 5),
since it enables better theoretical analysis (App. A).

𝑙𝑡 (𝜋𝑡 , 𝜋∗𝑡 ) = ℓDuGu =
1

4

(
𝑎𝑡 − 𝜋∗ (𝑠𝑡 )

)
2

. (5)

Learning efficiency. Using imitation learning methods can avoid

not only redundant exploration but also make good use of the

collected samples [21]. The training time of DuGu lasts less than an

hour, much shorter than DRL-based methods (Figure 7).

Implementation.We build the network emulator with c++, and
adopt Python and TensorFlow [40] to construct DuGu. We set learn-

ing rate 𝛼 = 10
−4

and use Adam [24] to optimize the model. Note

that DuGu can be deployed solely online once it has been trained.
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Figure 6: Examining learning-based CCAs in the same network setting, results are collected over the Pantheon environment.
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Table 1: Range of env. during the training.

Traces RTT Jitter Loss Rate Buffer Size

0.1-300Mbps 0-800ms 0-400ms 0%-30% 0.1-3×BDP

4 EVALUATION
4.1 Experimental Setup
Training Setup. DuGu is effectively trained on the proposed net-

work emulator. We collect about 2,000 real-world network traces

in a totally of 60 hours, including: Orca [3], DeepCC [4] traces for

wireless networks, FCC [34] network dataset for wired networks,

and HSDPA [35] for cellular networks. Meanwhile, we adopt Satura-

tor [45] to collect 50 network traces by ourselves, containing diverse

network environments such as social libraries and cybercafes. We

use 80% of the data for training and 20% of the data for validation.

In addition, Table 1 lists the network parameters used during the

training. It’s worth noting that the parameter ranger is much larger

than that of prior DRL-based approaches since imitation learning

has better learning efficiency compared with DRL.

Testbed Setup.Upon training a network policy, we use Pantheon [48]
to evaluate DuGuwith both various offline emulation and real-world

experiments. For the local emulation, we use Mahimahi [32].

CC Baselines. We take twelve state-of-the-art CC algorithms pub-

lished in very recent years as the baselines. 1) BBRv2 (BBR) [11]: a
model-based approach that detects maximum bandwidth and mini-

mumRTT periodically; 2) Cubic [18]: a loss-based approach, which
utilizes additive increase/multiplicative decrease (AIMD) scheme

to avoid congestion events; 3) Copa [8]: a delay-based heuristic,

which computes the target sending rate by the estimated minimum

delay; 4) TACK [26]: an innovative model-based mechanism that

gives a full protocol design with minimized ACK frequency re-

quired on the transport layer; 5) Ledbat [38]: a classic delay-based
scheme that is friendly to TCP protocols. 6) Aurora [22]: the first

DRL-based CC approach; 7) Orca [3]: a learning-assisted scheme

that utilizes NN to help improve Cubic; 8) Eagle [16]: a learning-
based approach that uses reinforcement learning to learn the BBR’s

fundamental mechanism; 9) Indigo [48]: a learning-based CC al-

gorithm via behavior cloning, where the algorithm is trained with

limited network conditions on Mahimahi. Furthermore, we also

use three online-learning approaches as the baselines, including

10) PCC Allegro (Allegro) [14], 11) PCC Vivace (Vivace) [15],
and 12) PCC Proteus (Proteus) [15].

4.2 Basic Performance Analysis
We validate DuGu against the above CC algorithms with basic net-

work settings, which sweep the values of minimum latency, stochas-

tic loss rate, buffer size, and bandwidth bottlenecks. Each scheme

is repeatedly tested five times.

Stochastic Loss. We fix network bandwidth as 12Mbps and let the

stochastic loss range from 0% to 30%, which has already covered

most network situations. As expected, Cubic, the loss-basedmethod,

fails to overcome the network condition if the stochastic loss is

more prominent than 2%. Orca is incrementally implemented based

on Cubic. Thus it illustrates the same observation. Moreover, model-

based approach such as BBR and TACK performs well if the loss is

lower than 10%, but the throughput degrades heavily if the loss is

above 10%. Both Vivace and Proteus cannot handle all loss rates for

the learning-based schemes. Aurora obtains the best link utilization

while it also performs with high latency. In contrast, DuGu can

provide high throughput and low latency under all stochastic loss

rates. We report the results in Figure 6(a).

Delay.We then set the network as previous settings but adjusted

the minimum one-way delay from 0ms to 200ms. Unsurprisingly,

DuGu rivals or outperforms recent heuristics, with the reduction of

95-percentile of one-way delay of 50%-60% compared with Cubic

and BBR in a similar throughput. What’s more, DuGu surpasses

the state-of-the-art learning-based approach Orca on both average

throughput and delay, yielding the high stability of DuGu.
Buffer Size. Next, we fixed the network bandwidth as 48Mbps, 30

ms minimum delay, 0% loss, and adjusted the buffer size from 10 to

2000 packets. DuGu keeps its performance above the link utilization
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Figure 8: Comparing DuGu with existing CC algorithms across various network traces. Results are demonstrated with the
comparison of several underlying metrics.
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Figure 9: Comparing DuGuwith existing CC algorithms across
various network traces (CDF of Power95).

of 0.9 across all scenarios as maintaining the 95-percentile one-

way delay of around 50ms. It isn’t easy since none of the other

CC algorithms also complete this task. For example, TACK, BBR,

and Cubic result in good link utilization but high one-way delay.

Proteus achieves a suitable one-way delay but fails to reach high

link utilization. Moreover, as much as Aurora is well behaved on

this task, DuGu also improves the average throughput by 2% and it

heavily decreases the average 95-percentile one-way delay by 21%

compared with Aurora.

Bandwidth. Finally, we investigate how DuGu works in different

network bandwidths. Here we set the minimum one-way delay as

30ms, loss as 0%, and buffer size as 1000 packets. The bandwidth

is swept from 12 - 72Mbps. We report the average link capacity

and 95-percentile one-way delay of each CC scheme. DuGu stands
for the top-3 scheme by considering link utilization and one-way

delay. Furthermore, the performance of learning-based approaches

degrades when the network bandwidth is over 50Mbps. We reason

that learning-based schemes, except Orca, adopt a network dataset

with a limited parameter range for training, which lacks sufficient

generalization abilities.

4.3 Trace-driven Emulation
In this part, we use cellular network environments (i.e. time-varying

networks) with different network settings (i.e., {60ms,240ms} min-

imum RTT, {0%, 3%} stochastic loss) and 1 × BDP buffer). We use

a version of Kleinrock’s power metric [26, 48], namely Power95

(
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

95−𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑑𝑒𝑙𝑎𝑦
) to measure the performance of the baselines

for video uploading. Results are shown in Figure 8, where the top

right region of the figures is the desired operation region for any

CC algorithm: gaining high throughput while achieving low delay,

and error bars show the average standard deviation of an algorithm

performed in the same environment.

DuGu vs. Heuristics. Comparing DuGu with recent heuristic-based

approaches highlights one of our key motivations: an excellent CC

algorithm is inseparable from the design principle of its mecha-

nism. Figure 9(a) depicts the results with the stochastic loss as 0%.

DuGu outperforms others, which can achieve 25.84%-95.28% better

Power95 compared to heuristics (i.e, Copa: 25.84%, TACK: 50.94%,

Reno: 72.2%, Cubic: 78.15%, BBR: 95.28%). Moreover, Figure 9(b)

illustrates the comparison results with 3% stochastic loss. We ob-

serve that the performance of loss-based approaches like Cubic

degrades heavily. Other model-based approaches (e.g., BBR and

TACK) perform well in network emulations with 30ms RTT, while

they fail to provide acceptable link utilization in the dynamic link

emulation with 120ms RTT. The key reason lies in the rationality of

the mechanism. DuGumimics expert principle for the probing phase

which can achieve up to 30× compared with Cubic. As shown in

Figure 8(a) (min. RTT=60ms) and Figure 8(b) (min. RTT=240ms),

comparing DuGu with the best heuristic-based method, TACK, we

see that DuGu rivals TACK in terms of the average throughput but

it heavily reduces 38%-41% 95-percentile one-way-delay.

DuGu vs. Learning-based CC Algorithms. Moreover, we discuss

the comparison results of DuGu and existing learning-based schemes.

First, Figure 9(a) illustrates that DuGu consistently stands for the best
scheme among all candidates, which improves average power95

by 13.59% (Indigo) to 1.7× (Eagle). Meanwhile, we also observe a

similar rank with 3% stochastic loss. Figure 9(b) demonstrates that

DuGu outperforms others with up to 5.9× better power95 metric. In

addition, as demonstrated in Figure 8, DuGu consistently achieves its
high performance with low one-way delay, outperforming recent

learning-based baselines with up to 1.31× better throughput and
53.02% latency reduction.

⊲ DuGu vs. Indigo. Indigo also leverages the imitation learning

method to learn the policy from scratch. The critical difference

between Indigo and DuGu is the way to obtain the expert policy.

Figure 8 shows that DuGu betters Indigo on average throughput of

21.22% and 95-percentile delay of 1.3% with 0% packet loss envi-

ronment, as it also improves average throughput by 13.86% and de-

creases delay of 0.12% with 3% loss. In other words, the advantages

of the mechanism enable DuGu to increase at least 13% throughput

with a similar delay. Moreover, compared with Indigo, DuGu shows

outstanding behavior in terms of robustness, especially when min.

RTT reaches 240ms. Here please recall that, “robustness” is a critical

factor in determining whether the CC algorithm can be successfully

deployed in the real-world.

⊲ DuGu vs. PCC family. Here we see that three PCC algorithms

have almost the same behavior: they achieve high throughput but

high latency with no loss network conditions and perform low

throughput with 3% loss. Proteus performs slightly better than the
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Figure 10: We conduct a real-world evaluation on the real Internet, which is composed of eight servers.

other two algorithms. We reason that the online learning methods

rely on a formal utility function (or reward function), while the

existing weighted reward function hardly maps the actual require-

ment for all networks [19]. DuGu doesn’t have such issues since it’s

optimized by the expert policy rather than maximizing rewards.

⊲ DuGu vs. Orca. Orca’s two-level mechanism enables the NN

policy to control Cubic. However, Orca is still constrained by the

harmful mechanism of Cubic. Figure 8(c) and Figure 8(d) show that,

as much as Orca has tried its best to overcome the hostile policy

acted by Cubic, we also observe a heavy drop in the overall through-

put compared to that in the zero-loss network. Hence, we must

recall that the fundamental mechanism is a non-trivial cornerstone

for implementing an excellent learning-based CC algorithm. DuGu
performs well in all considered network conditions.

4.4 Real-world Evaluation
To better understand how DuGuworks in the real world, we compre-

hensively evaluate the performance on the real Internet by utilizing

eight servers located around the world, which include: Beijing,

Guangzhou, Guiyang, and Tokyo from Asia; Sydney from Australia;

Frankfurt and London from Europe; Johannesburg from Africa. All

the experiments are completed on the Pantheon platform [48]. We,

located in Beijing, send a flow using the CC scheme to test the

video uploading task for each client-server link. The scheme is

tested three times and picked by random order. The entire testing

process lasts over 4 hours. We evaluate the performance for more

than 15 days, from July 12 to July 28, 2021, and totally collected

more than 500GB of data, which is almost two times of Orca’s [3].

We categorize the servers into two network types, i.e., intra-

continental (in China) and inter-continental scenarios (the other

five servers). The results of intra-continental scenarios are shown

in Figure 10(a) to Figure 10(c), in which the error bar indicates

the standard deviation of an algorithm running in the same net-

work. We have three observations here. First, DuGu achieves high
and stable performance, which rivals BBR on average through-

put while decreasing the average 95-percentile one-way delay up

to 2×. Especially in the Beijing-Beijing link 10(a), DuGu’s perfor-
mance even fulfills the requirement of cloud gaming [5]. Apart

from DuGu, none of the other algorithms can transmit such a high

throughput (90.03Mbps) with low latency (3.60ms). It’s an interest-

ing observation that motivates us to formally verify DuGu in future

work [7]. Besides, with the increase in minimum delay, we can see

that learning-based approaches, including Aurora, Eagle, and In-

digo, perform with unstable behavior. In contrast, DuGu reaches the
right top of the figure in all considered scenarios, demonstrating

the superiority against recent schemes.

Next, from the results on the inter-continental link, we see that

the results of Ledbat [38] demonstrate the critical difference be-

tween intra-continental and inter-continental scenarios: the large

min. RTT makes it difficult for the delay-based algorithm to ob-

tain high link utilization w.r.t the estimated queuing delay (default

100ms). Eagle performs much better in the inter-continental link

than in the intra-continental connection on both efficiency and

stability, ranking top-5 competitive among all candidates. We rea-

son that Eagle learns the policy w.r.t the BBR’s mechanism, suit-

able for the inter-continental link. Orca follows the fundamental

principle of Cubic, resulting in poor performances. By contrast,

DuGu mimics BBR’s mechanism, achieving high throughput and

low delay. Further, the PCC family also maintains their outstanding

abilities. In particular, both Allegro and Vivace show extraordinary

stability in Figure 10(e) (Frankfurt), Figure 10(f) (Sydney) and Fig-

ure 10(g) (Tokyo). We confirm that the inter-continental link is

often constructed by a large buffer queue [3], which can provide

an accurate delay signal. The signal enhances the effectiveness of

online learning. The only exception is Proteus since it changes its

CC policy periodically. We can also see that DuGu rivals or outper-

forms the PCC family, especially in the Beijing-Johannesburg link.

It’s challenging because South Africa is over 8,000 miles away from

China, leading to a pretty huge RTT (almost 500ms).

Finally, we observe that Copa performs well in intra-continental

networks but is vividly fair and unstable in inter scenarios. One of

the reliable reasons is Copa’s mechanism can hardly estimate the

min. RTT in the interlink, while DuGu leverages meticulous probing

phase that accurately detects whether the network condition has

been changed.
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Figure 11: Performance comparison with production CC policy. Results are tested on the Kuaishou’s short video uploading task.
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Figure 12: DuGu with different weights.
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Figure 13: DuGu’s fairness and friendliness.

Table 2: DuGu with different NN architectures.

DuGu 1D-CNN (32) 1D-CNN (64) GRU (128) GRU (256)

Inference (ms) 0.38 0.66 1.38 2.27

4.5 A/B Testing
Finally, we test DuGu for the short video uploading service in the

Kuaishou App [1], a popular commercial short video platform, and

present results from two A/B tests with millions of real upload

videos each day in China, over four weeks from December 2021 to

January 2022. DuGu’s primary process is implemented by c++ and

deployed as a part of KTP (i.e., Kuaishou Transport Protocol). The

DuGu’s NN policy is executed by YCNN (i.e., Kuaishou’s deep learn-

ing inference engine), written in c++ as well. During the test, we

compare DuGu with Kuaishou’s base CC algorithm – an extremely

tuned heuristic with several rounds of A/B testing, spanned almost

three years.

We have tried many typical DNNs, such as Fully-Connected (FC),

GRU [13], or even Transformer-based architectures [42]. Unfortu-

nately, FC-based DuGu lacks performance and Transformer-based

DuGu consumes too much computational time (i.e., almost 4ms).

A/B tests illustrate that GRU and 1D-CNN based DuGu perform

similarly but their average inference time is different.

Figure 11 shows detailed results of 1D-CNN model. There are

three key takeaways from these results. First, DuGu achieves similar

performance in terms of average throughput against the base algo-

rithmwhile heavily reducing the average RTT by 24.57%.We reason

that DuGu faithfully controls the cwnd as 1×BDP, resulting in high

performance with low buffer utilization. Second, DuGu improves

average Power by 3% compared with the base algorithm due to its

advantages in the low RTT metrics. Finally, we show a detailed

comparison of DuGu and the baseline on average completion time

for six consecutive days. As expected, DuGu performs stably better

than the base group by 0.66%-1.91% in several successive days of

experiments, with the average improvement of 1.35%–it’s indeed

a significant improvement. On the one hand, DuGu is directly de-

ployed on KTP, and apparently, it does not adapt to KTP’s FEC

and ARQ methods [9]. We believe DuGu would perform better if we

considered all factors. On the other hand, the baseline algorithm

has been updated for two years, almost representing the upper

bound of heuristics. Meanwhile, the result is comparable to the

magnitude of the total benefit reported by some academic work

that used real-world experiments [6, 29, 47].

5 DISCUSSION
Multi-objectives. We validate DuGu with different weights over

the high-variance bandwidth collected from the real world. DuGu is

configured with multiple weights ranging from 0 to 1 (i.e., DuGu-𝜔).
We plot the throughput dynamic in Figure 12. DuGu-0 (i.e., DuGu
with 𝜔 = 0) performs conservative to avoid congestion events and

cannot achieve high link utilization. By contrast, DuGu-1 performs

aggressively, almost fully utilizing the bottleneck. We see DuGu-0.5
reaches the best of both worlds.

Fairness. DuGu follows the principle of BBR [11] and Copa [8], as

these two heuristics that have already proved their fairness. To val-

idate fairness, we initiate three flows in an emulated network. Each

flow starts in a 10-second-interval. Figure 13 shows the throughput

of the three flows performed by DuGu. We can see that DuGu with
the same default weight achieves a fair share. Furthermore, DuGu
also achieves TCP friendliness when𝑤 = 1.

Overhead. During A/B testing, one of the critical metrics is the

computational overhead of executing DuGu. We validate DuGu with

two NN architectures and two-parameter settings. In Table 2, results

are computed as average inference time over all users in the group.
Almost all configurations can be successfully performed on the user

side – most mobiles are sufficient to execute such light-weighted

NNs.While considering the real-time requirement of the server-side,

we believe that distilling policies as decision tree models should be

a practical approach [54].

6 CONCLUSION
We presented DuGu, a congestion control algorithm for short video

uploading. By leveraging domain principle, DuGu mimics both the

mechanism and strategy from the expert. The DuGu’s mechanism

leveraged the probing phase to detect the network change periodi-

cally and adopted a NN for adjusting the cwnd for achieving high

throughput and low latency, We constructed several essential tools

and modules to effectively train DuGu via imitating learning. We

made comprehensive experiments to prove the advantages of DuGu
across a wide range of network scenarios.
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Figure 15: Results comparison between our proposed net-
work emulator and real network emulator Mahimahi [32].
We show the close relationship between these two schemes.
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Figure 14: Details of short video uploading simulator.

Appendices

A PROOF
Suppose we sample𝑚 trajectories with 𝜋𝑖 at iteration 𝑖 . Let 𝜖𝑁 be

the average loss of the best policy on w.r.t the collected samples

and 𝑁 be the total training iteration. We have the following upper

bound of the ℓDuGu:

Theorem A.1. For DuGu, if 𝑁 = 𝑂 (𝑇 2𝑙𝑜𝑔(1/𝜎)) and𝑚 = 𝑂 (1)
with the probability at least 1−𝜎 , there exists a policy 𝜋 s.t.E[ℓDuGu] ≤
𝜖𝑁 +𝑂 (1/𝑇 ), in which 𝑇 is the number of samples for trajectories.

Proof. Let 𝑄𝜋 ′
𝑡 (𝑠, 𝜋) denote the t-step cost of performing 𝜋 in

state 𝑠 and then following policy 𝜋 ′:

𝑄𝜋 ′
𝑡 (𝑠, 𝜋 ) =

1

4

©«(𝜋∗ (𝑠 ) − 𝑎)2 +
𝑡∑︁

𝜓=2

(𝜋∗ (𝑠𝜓 ) − 𝜋 ′ (𝑠𝜓 ) )2
ª®¬ (6)

Consider ℓDuGu is the 0-1 loss, 𝑡 ∈ 1, 2, . . . ,𝑇 , we have the following
equation for all action 𝑎:

𝑄𝜋∗
𝑇−𝑡+1 (𝑠, 𝑎) −𝑄

𝜋∗
𝑇−𝑡+1 (𝑠, 𝜋

∗) = 1

4

(𝜋∗ (𝑠) − 𝑎)2 ≤ 1. (7)

From this end, all conditions are satisfied and we can follow a

similar proof to [20, 31, 36]. ■

B SHORT VIDEO UPLOADING SIMULATOR
We now introduce our simulator for the short video uploading task.

First, we show the relationship between the video uploading simula-

tor and our proposed omniscient-like emulator in Figure 14(a)–both

the simulator and DuGu are run as applications on the emulator.

Next, the video uploading simulator can be summarized in the fol-

lowing processes. i) we generate a video chunk with the size of 1

to 8 MegaBytes; ii) the video chunk is transferred by our proposed

NN-based CC algorithm DuGu; iii) then the transmission process

will be slept for a while, basically 0 to 10 seconds. In the meantime,

DuGu is changed to the probing phase and detects the network met-

rics (i.e. min. RTT); iv) finally, DuGu will be changed to the control

phase once the video has been generated (i.e., sleep ends).

Here please recall that, we use Pantheon [48] and Mahimahi [32]

as the “real transport tools” in the evaluation, as the omniscient-

like emulator is only used for training. We formally verify the

accurateness of the proposed offline emulator in Figure 15. The

graphs show the close correlation of strategy between our emulator

and Mahimahi [32] for both metrics.

C TRAINING ALGORITHM
Alg. 1 illustrates the detailed training algorithm of DuGu. First, we
randomly pick network traces from the dataset and set various

network settings, such as minimum latency, loss rate, and buffer

size, as the network environment. Then the agent establishes a

virtual session with a virtual sender and receiver. Next, for each

time slot 𝑡 , the agent, running in the given environment, receive a

state and takes action 𝑎𝑡 w.r.t the policy given by the NN. Once the

sender receives the ACK packet, it updates the state and calculates

the sending rate and the receive rate iteratively. At the same time,

the solver estimates the expert policy and computes the relative

gap between the action and the expert. We store the state and the

expert policy as the label in the replay buffer. Moreover, we restore

a batch of samples from the replay buffer and use samples to update

the NN via ℓDuGu. Finally, we continually produce the process by

performing the estimated action 𝑎𝑡 till the agent receives the next

state. In addition, We modify DuGu’s training in the single-agent

as training in multi-agents. By default, DuGu adopts 40 forward

propagation agents and one central agent.

D WIFI AND 4G EXPERIMENTS
D.1 Public WiFi and Cellular Networks.
Before online A/B testing, we also establish two experiments for

WiFi and Cellular networks. Specifically, we first apply all the base-

lines on a laptop (Ubuntu 20.04, 16G RAM) and treat the laptop as

the sender. Next, we connect a public WiFi and evaluate the perfor-

mance of each scheme. Finally, we use a “4G USB stick adapter” to

enable a cellular network and test all the schemes over the unique

servers from eight different destinations. Figure 16 reports the

comparison results of CC schemes over public WiFi and cellular

networks. Note that we normalize the average throughput and delay

since each link has different capacities. We can observe that DuGu
performs well, always top-3 of the existing schemes. Furthermore,

we also see that DuGu can only achieve 60% throughput compared

with BBR. It could be another challenge that we aim to solve it in

the future.
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Figure 17: Summarizing all underlying metrics of DuGu and
existing schemes.

Algorithm 1 DuGu Overall Training Procedure

Require: NN model \ , Solver.
1: procedure DuGu Training

2: Initialize \ .

3: Experience Replay 𝐵 = {}.
4: repeat
5: Env← randomized trace and network settings.
6: t←0

7: while time slot do
8: Get current state 𝑠𝑡 from the Env.

9: Get 𝑎𝑡 according to policy 𝜋 (𝑠𝑡 ;\ ) .
10: # Imitation Learning Here.
11: Get expert action 𝜋∗ (𝑠𝑡 ) = Solver(𝑠𝑡 ) .
12: Store samples: 𝐵 ← 𝐵

⋃{𝑠𝑡 , 𝜋∗ (𝑠𝑡 ) }.
13: Sample a batch �̂� ∈ 𝐵.
14: Train \ with �̂� using ℓDuGu

15: Perform 𝑎𝑡 and receive the new state 𝑠𝑡 .

16: if done then ⊲ End of the session.

17: break

18: t←t+1

19: until Converged

(a) Public WiFi (b) Cellular Network

Figure 16: Examining CC algorithms in the public WiFi and
Cellular network environment.

D.2 Key Takeaway
In general, we summarize all the experiment results from July 1 to

July 28. Figure 16 shows the overall performance for each proto-

col, in which the results are computed as the average throughput,

95-percentile one-way delay, and power95 metric. The error bar

represents the standard deviation for each run. DuGu reaches the

highest power95 score among all the schemes. Still, results of Indigo

show that a policy that achieves low throughput and extra-low la-

tency can also score a high power95 score. In other words, gaining

a higher power95 metric doesn’t mean obtaining a better policy. It

might demystifies that only optimized strategies towards higher

power-based objective function [3, 8, 39, 44] may not be on the

right track. Instead, we recommend taking multiple metrics into

account, such as throughput, one-way delay, etc.

E RELATEDWORK
Congestion control is one of the most fundamental and challenging

problems in computer network with more than thirty years. Cu-

bic [18] is a loss-based scheme which a modify version of the linear

window growth function. BBR [11] obtains minimum RTT and the

maximum bandwidth iteratively, and adjust the pacing rate w.r.t

the estimated BDP. Copa [8] is a delay-based approach which uses

one-way delay to evaluate the target sending rate. However, heuris-

tics require careful tuning as it is difficult to well-behaved over all

considered scenarios. Moreover, with the rapid increase of deep

learning technology, the congestion control problem has ushered

in a renaissance. Remy [3] is an offline optimization framework

for CC and it can surpass many heuristic algorithms under specific

networks, however it can’t adapt well when meets new network

condition. Indigo [48] employs imitation learning to get optimal

expert policy, while its expert policy is not so precise. Muses [54]

focuses on proposing light-weighted CC algorithms while pay less

attention to specific tasks. Moreover, deep reinforcement learning

has shown promising performance in complex real-world tasks. For

example, Aurora [22] directly adopts the DRL method towards a

linear-based reward function. Eagle [16] imitates the mechanism

of BBR to learn the phase via DRL. Orca [3] provides another di-

rection to integrate classic and modern using DRL and heuristics,

but it’s still hard to solve the origin limitation of the heuristics.

PCC-Allegro [14] calculates the value of utility function to update

the sending rate. PCC-Vivace [15] apply the gradient-based no-

regret online optimization to speed up the convergence process.

PCC-Proteus [30] adapts to different application scenarios by using

a variety of utility functions. However, such smart mechanisms are

really hard to be learned by reward functions, as the state space

is partially observable. Although online-learning methods have

made good progress, they are still struggle with performing in low

convergence rate. Meanwhile, none of the existing methods well

supports the short video uploading task.

F EPILOGUE
It has been almost two years when we finished the first version

of DuGu on the subway. We would like to thank every colleagues

from Kuaishou who help us improve the work in the last two years,

including Bing Yu, Liang Guo, Yangchao Zhao, Yixuan Ban, Dan

Yang, Xiaoyi Zhang, Chengyuan Zheng, Yufeng Geng, Shucheng

Zhong, Yusong Yang, etc.

While back to the task itself, we believe that it will get more

promotion in the MM field. Cross-layer optimization is one of the

future directions. For instance, the pre-transcoding setting can be

determined w.r.t the network capacity and the users’ device ability;

the rate control method can leverage I-frame interval information

to make the post-processing, placed on the server, more effective.

Before finishing such promising approaches, we have to analyze

its task characteristics in advance and provide a feasible transport

mechanism to solve the fundamental problem. Our work is a con-

structive step in the short video uploading field.
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