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ABSTRACT
Livecast streaming has received great success in recent years. Al-

though many prior efforts have suggested that dynamic viewer

scheduling according to the quality of service (QoS) can improve

user engagement, they may suffer inefficiency due to their igno-

rance of viewer heterogeneity in how the QoS impact quality of

experience (QoE).

In this paper, we conduct measurement studies over large-scale

data provided by a top livecast platform in China. We observe that

QoE is influenced by a lot of QoS and non-QoS factors, and most

importantly, the QoE sensitivity to QoS metrics can vary signifi-

cantly among viewers. Inspired by the above insights, we propose

HeteroCast, a novel livecast scheduling framework for intelligent

viewer scheduling based on viewer heterogeneity. In detail, Hetero-

Cast addresses this concern by solving two sub-problems. For the

first sub-problem (i.e., the QoE modeling problem), we use the deep

factorization machine (DeepFM) based method to precisely map

complicated factors (QoS and non-QoS factors) to QoE and build the

QoE model. For the second sub-problem (i.e., the QoE-aware sched-

uling problem), we use a graph-matching method to generate the

best viewer allocation policy for each CDN provider. Specifically, by

using some pruning techniques, HeteroCast only introduces slight

overhead and can well adapt to the large-scale livecast scenario.

Through extensive evaluation on real-world traces, HeteroCast is

demonstrated to increase the average QoE by 8.87%-10.09%.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Computing
methodologies → Neural networks.
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1 INTRODUCTION
Livecast services have become increasingly popular and received

great development in the past few years, and many livecast plat-

forms have shown unprecedented growth across the world (e.g.,

Twitch
1
and Kuaishou

2
). As reported by Cisco, there have been

more than 36% of Internet users watching live videos in 2016, and

the livecast market will grow up to over 70 billion by 2021.

To enhance the high quality of experience (QoE) for the livecast

viewers, multi-CDN (content delivery networks) have become the

most common structures when delivering streaming content [1, 30,

31]. However, due to the large-scale dynamic viewers and the tem-

poral variation in CDN performance, how to effectively scheduling

viewers among CDN providers is still challenging. Compared with

other kinds of videos (e.g., video on demand), livecast is equipped

with some unique properties. First, the livecast platforms will face

an explosive number of viewers due to the numerous broadcasters.

For example, it is reported that in 2018, Twitch had more than 2.2

million broadcasters and 15 million daily unique users (DAU) [11],

while the DAU of Kuaishou was more than 100 million in 2019 [12].

Such large-scale viewers may bring significant burdens to the CDN

performances( §3). Second, given the various service requirements,

different viewers may have their individual preference [21, 26].

For example, the viewers who enjoy interacting with broadcasters

are much more sensitive to stalling event
3
, while for those who

only want to take a glance and frequently switch among different

channels, startup latency is much more important.

Unfortunately, existing work cannot handle the above features

well. Most of themhave no considerations of viewer heterogeneity[15,

16, 19, 30, 31], which separates them from efficiently scheduling

livecast viewers. Meanwhile, some work indeed pays attention to

the viewer heterogeneity [21, 26, 33], but due to their ignorance of

the computation overhead, it is hard for them to be practically used

for the livecast scenario with large-scale viewers.

To tackle the above concerns, we propose HeteroCast, a novel

framework that explores the opportunity of scheduling viewers

based on QoE heterogeneity. The critical insight behind our ap-

proach is that: simply optimizing the QoS equally across all the

1
twitch.com

2
kuaishou.com

3
A stalling event happens when there is no data in the video player.
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viewers can be sub-optimal, as the viewers have heterogeneous

sensitivities. Specifically, from the measurement studies on real-

world traces, we verify that the relationship between QoE and QoS

metrics is complicated and remains a non-linear curve (§3). This

indicates that Although this insight is promising, however, directly

applying it into practice is still challenging.

⊲ The first challenge is how to build up amodel that canwell char-

acterize user engagement. In this paper, we use watching duration

as the measure of engagement. This metric has been widely used

in both academia and industry [2, 7]. Actually, user engagement

is affected by multiple factors: e.g., different QoS metrics (startup

latency, stalling duration, etc.), channel categories (entertainments,

outdoors, etc.), and even device types (iPhone, Android, etc.). At

the same time, these factors are not independent with each other,

and empirical assumptions are unlikely to work.

⊲ The second challenge is how to deal with the correlation be-

tween the scheduling decision and CDN performance. Different

from some static application scenarios (e.g., Spark job services [20]),

in which the service performance is the intrinsic quality, and will

not be influenced by the decision, in our problem, the QoS of CDN

providers will suffer degradation if too many viewers are scheduled

to it (i.e., overloaded).

⊲ The third challenge is how to run the HeteroCast over large-

scale viewers in a real-time way. Even if we have overcome the

above two challenges well, it is still impossible to decide for each

individual viewer, since the massive viewer number can result in

unacceptable computation overhead.

HeteroCast addresses the above challenges by decoupling the

original problem into two sub-problems (i.e., the QoE modeling

problem and the QoE-aware scheduling problem.). For the first sub-

problem, we try to build up the QoE model by leveraging the deep

factorization machine (DeepFM) method, which has been widely

used in recommendation systems. DeepFM is quite suitable since

it can naturally characterize the interactions of multiple factors.

However, directly using it will cause too much computation over-

head. As a result, we propose to use some pruning methods, which

is driven by an insight that viewers sharing some context factors

are more likely to have similar QoE patterns. For the second sub-

problem, we try to schedule viewers based on the graph-mapping

technique. In detail, considering the workload influence on CDN

performance, we first allocate viewer requests regardless of their

heterogeneity. After that, we then leverage the graph-matching

method and QoE model to make a more fine-grained assignment

for viewers (i.e., considering the heterogeneity.)

In summary, our contributions are as follows. 1) We carry out

a large-scale measurement on real-world data, and we get some

insights into a better QoE model and a more effective livecast sched-

uling method. 2) Based on the the QoE model, we propose Hete-

roCast, a novel QoE-aware scheduling approach that makes full

use of the viewer heterogeneity to schedule viewers. 3) After the

extensive trace-driven experiment, HeteroCast is demonstrated to

significantly outperform baseline algorithms.

2 RELATEDWORK
In the past few years, Livecast has received great attention in both

academia and industry. There is a large literature focusing on how to

improve the viewer QoE. Some of them pay attention to the system-

atic optimization by introducing additional technique supports (e.g.,

the cloud services or edge devices). For instance, [5, 9, 25, 27, 34]

propose to use cloud-assisted architectures to optimize the content

delivery or live video transcoding, while authors in [21] suggest

to use edge devices as relays to optimize the first-mile video trans-

mission. Since the above methods need extra equipment supports

(e.g., the cloud and edge devices), they cannot be directly applied

in contemporary CDN structures.

Multi-CDN has been used as a fundamental delivery architec-

ture in contemporary Internet video services. Especially, due to the

dynamics of the CDN provider performance, plenty of work has

focused on the multi-CDN selection problem and propose to sched-

ule viewers adaptively. For example, [3, 4, 15] use some feature

engineering methods to predict the QoS of different CDN providers,

and schedule as many as viewers to the best CDN (i.e., with the

highest QoS), while authors in [16] use an exploration-exploitation

(E2) based method to estimate the CDN performance, and make de-

cisions in a real-time way. There are also some work use end-to-end

learning based methods to schedule viewer [30, 32] However, since

these methods all use QoS as the optimization objective, they do not

take the heterogeneity of viewer requests into account. In contrast,

the viewer scheduling in HeteroCast addresses this concern by

building up a precise QoE model. Meanwhile, some work [8, 21, 26]

shares with us the idea of providing services based on the QoE of

users. Nevertheless, these methods either result in too much compu-

tation overhead as they need to be run over each individual viewer,

or generate their policies based still on some simple QoE models

(e.g., the weighted sum of different QoS metrics). In contrast, by

utilizing some pruning techniques and a more precise QoE model,

HeteroCast only introduces slight overhead, and can well optimize

the QoE for large-scale viewers. There is also some work focusing

on modeling QoE. E.g., [13, 28] propose FM-liked QoE models; [29]

uses a DNN-based models to characterize viewer engag ement. Our

work differs with them as we further integrate the QoE method

into the scheduling problem.

3 MOTIVATION
3.1 Dataset
The dataset in this paper is collected with the help of Kuaishou, a

top livecast platform in China. The dataset consists of two parts:

the first part is the CDN data, which contains the performance of

different CDN providers, including the following industry-standard

QoS metrics [2, 15, 31]:

⊲ Startup latency (StartUp): it represents the duration between a

viewer requests the video and the video starts to play.

⊲ Stalling frequency (𝑆𝑡𝑎𝑙𝑙𝐹𝑟𝑒𝑞): it represents the frequency of

the stalling events that happened during the session, which can be

calculated as the ratio between the overall stalling times and the

session duration (
♯𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔𝑒𝑣𝑒𝑛𝑡
𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑡𝑖𝑚𝑒 ). For better illustration, we multiply

𝑆𝑡𝑎𝑙𝑙𝐹𝑟𝑒𝑞 with the constant 100, which then represents the stalling

frequency per 100 seconds.

⊲ Stalling time (𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒): Unlike 𝑆𝑡𝑎𝑙𝑙𝐹𝑟𝑒𝑞, 𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒 focuses
on the time spent on the stalling event, and it can be calculated as

the rate between the time of stalling and session duration. We also

use stalling time per 100 seconds.
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(a) The relationship between stalling time and watching

duration

(b) The relationship between stalling frequency and

watching duration

(c) The relationship between stalling time and watching

duration

Figure 1: The relationship between QoS factors and the QoE (i.e., normalized watching duration).

Figure 2: The influence of channel category. Figure 3: The influence of device type. Figure 4: The dynamics of CDN providers.

The second part is the user data, which contains about 1000M

user request traces spanning one week in 2019. The key features in-

clude: access time, leaving time, user ID, channel ID, the device type,

the CDN provider, and channel category (e.g., Dancing, Gaming,

Outdoors, etc.). All user IDs and channel IDs are anonymized.

3.2 QoE Heterogeneity
We first investigate how different QoS factors influence livecast

user engagement. Like previous work [2, 7], we use the watching

duration as the estimate of QoE
4
. Given the data pair (𝑥,𝑦) in which

𝑥 is the value of the QoS metric, and 𝑦 is the QoE value, we group

them into the bins. For each bin, we calculate the average QoE value

of the sessions that fall in the bin. Figure 1 shows how the three QoS

metrics interact with QoE, from which we can derive the following

two observations. First, the QoS factors can significantly impact

user engagement. For example, in Figure 1(a), with the stalling time

increasing from 0.25 to 2.75 second per 100s, the QoE drops sharply

from 1.0 to 0.58. This actually indicates that providing better QoS

is crucial to improve user QoE. Second, user engagement with

different service levels may have different sensitivity to QoS. For

example, in Figure 1(b), when the stalling frequency is short (lower

than 1 times per 100s), the watching duration is almost unchanged

with QoS. At the same time, for the QoE with the stalling frequency

between 1 to 1.5, it has the sharpest slope, whichmeans that the QoE

is much more sensitive to stalling frequency in this interval. The

similar observation can also be derived in Figure 1(c) (i.e., the QoE

4
As required by the data provider, we normalize the duration.

is insensitive when 𝑆𝑡𝑎𝑟𝑡𝑈𝑝 is in the interval (0, 1900)𝑚𝑠 , while
much more sensitive in (1900, 4000)).

The above observations actually demonstrate that although pro-

viding better QoS can generally improve the QoE, the improvement

still varies due to the heterogeneity of QoE sensitivity. Meanwhile,

these observations also inspire us to schedule viewers in a QoE-

aware manner, which may facilitate a better livecast scheduling

approach.

3.3 Challenges
Despite the fact that integrating heterogeneity of QoE sensitivity

into livecast scheduling is promising, directly applying it into live-

cast scheduling is challenging in both algorithmic and systematic

perspectives.

⊲The algorithmic perspective: to facilitate a QoE-aware sched-
uling approach, we first need to build up a QoE model to precisely

characterize the relationship between QoS and QoE, which, how-

ever, is complicated. As shown in Figure 1, we can see that user

engagement decreases non-linearly with QoS factors. This suggests

that the QoE model should be able to capture this nonlinear rela-

tionship. Second, the QoE is also influenced by multiple non-QoS

factors, such as the channel category, and also the device type.

These non-QoS factors will interact with the QoS factors, which

makes the QoE model even more complicated. As a practical exam-

ple, we present the relationship between startup latency and QoE of

two channel categories in Figure 2. Specifically, for each session, we

calculate the ratio between the watching duration and the startup

latency (i.e., 𝑣𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑆𝑡𝑎𝑟𝑡𝑈𝑝

) to denote the viewer tolerance.

Obviously, a larger 𝑣𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 indicates that these viewers are more
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Figure 5: The system overview of HeteroCast.

tolerant, as they have longer watching duration for a unit startup

latency. We present the 𝑣𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 of two channel categories in the

form of CDF, and show the results in Figure 2. We can find that the

viewers of “Dancing” channels are more tolerant than the viewers

of “Outdoors” channels. This can be explained as the “Outdoors”

viewers are likely to interact with broadcasters and other audiences,

which makes them more intolerant to delays. Additionally, we also

give an example of how the device type influences user engagement.

We select the traces from the same channel, and categorize them

based on the device type. We present the results in Figure 3, and

we can also find that the tolerance of iPhone and Android users

also shows some heterogeneity.

⊲The systematic perspective: in addition to solving the diffi-

culties encountered from the algorithmic perspective, a practical

scheduling approach also needs to meet the following two sys-

tematic requirements. First, the scheduling approach should be

light-weighted and run in a real-time way. As denoted by previ-

ous work [21], livecast viewers are much more sensitive to latency

(since they are more likely to interact with others). Therefore, too

much overhead will inevitably increase the overall decision time

and violate user engagement. In fact, this real-time requirement

makes it difficult to apply many algorithms that aggregate requests

first and then process them collectively [33]. Second, the scheduling

approach should also consider the dynamics of CDN providers. In

detail, the dynamics consist of two parts: the temporal dynamics

and the workload-related dynamics. For the temporal dynamics,

we take startup latency and stalling time as examples and present

them in Figure 4. We can find that the performance of the CDN

provider varies significantly with time. This can be explained that

CDN providers have their own offloading policies (e.g., how many

servers should be used) which are blind to livecast platforms, and

the policies may change over time [31]. For the workload-related

dynamics, we also group the data into the equal-sized bins by the

workload, and calculate the average QoS for each bin. The results

are shown in Figure 1. As illustrated, the CDN provider will suffer

significant QoS degradation when the viewer number exceeds a

certain threshold. In other words, compared with a lot of previous

work, in which the service performance is assumed as the intrinsic

property and will not be influenced by the decision (e.g.,[19]), the

CDN performance in our problem is correlated with the scheduling

decision. This is reasonable as too many viewers will overload the

CDN and thus violate its performance.

Algorithm 1 The decision logic of HeteroCast at time 𝑡

Require: The QoS model: 𝑄𝑜𝑆 ; The QoE model: 𝑄𝑜𝐸; The histori-

cal data (e.g., workload, QoS, and etc.): 𝐻𝑖𝑠𝐼𝑛𝑓 𝑜 ; The allocation

candidates for all CDN providers: 𝐴𝑙𝑙𝑜𝐶𝑎𝑛𝑑𝑖

1: procedure HeteroCast
2: Initialize the best scheduling policy 𝜋 and its QoE 𝑄 .

3: /* Greedy search in the first level, which determines the

QoS of CDN providers*/

4: for all 𝑎𝑙𝑙𝑜𝑐𝑎𝑛𝑑𝑖 ∈ 𝐴𝑙𝑙𝑜𝐶𝑎𝑛𝑑𝑖 do
5: QoS← 𝑄𝑜𝑆 (𝑎𝑙𝑙𝑜𝑐𝑎𝑛𝑑𝑖, 𝐻𝑖𝑠𝐼𝑛𝑓 𝑜);
6: /* Group-based and K-means-based pruning */

7: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝑃𝑟𝑢𝑛𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ()
8: /* Generate the bipartite graph 𝐺 */

9: 𝐺 ← 𝑄𝑜𝐸 (𝑄𝑜𝑆,𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠, ...)
10: 𝜋 ′, 𝑄 ′ ← 𝐺𝑟𝑎𝑝ℎ𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝐺)
11: /* Update the best policy 𝜋 */

12: if 𝑄 ′ > 𝑄 then
13: 𝑄 = 𝑄 ′, 𝜋 = 𝜋 ′

From the above analysis, we can conclude that: 1) there exists het-

erogeneity for QoE sensitivity, which can be used to generate a bet-

ter viewer scheduling policy. 2) To leverage the heterogeneity, the

scheduling approach needs to build up a precise QoE model, which

should not only capture the non-linear relationship between QoS

and QoE, but also well characterize the complex interactions among

non-QoS and QoS factors. 3) The scheduling approach should sat-

isfy the real-time requirements of the livecast scenario. At the same

time, it should also be aware of the dynamics from CDN providers,

which are both time-variant and workload-related.

4 SYSTEM OVERVIEW
The system architecture of HeteroCast is shown in Figure 5. As

presented, HeteroCast is composed of the following parts: the QoS

predictor, the QoE model, and the Decision model. The QoS pre-

dictor is used to characterize the dynamics of CDN performance,

which will predict the QoS based on the decision and historical data;

the QoE model provides the QoE estimation after receiving the QoS

prediction; the decision module will take the QoE estimation as the

inputs and output the scheduling decision for each request.

The logic of HeteroCast consists of two levels: the first level will

traverse the allocation candidate (denoted as 𝐴𝑙𝑙𝑜𝐶𝑎𝑛𝑑𝑖), which de-

termines theQoS of each CDNprovider. Each candidate in𝐴𝑙𝑙𝑜𝐶𝑎𝑛𝑑𝑖

represents how many viewer requests will be scheduled to each

possible CDN provider. For instance, suppose that there are 3 CDN

providers (denoted as CDN A, B, and C), and one candidate (de-

noted as 𝑎𝑙𝑙𝑜𝑐𝑎𝑛𝑑𝑖) is (𝑥%, 𝑦%, 𝑧%), it means that x%, y% and z%

of total viewers will be scheduled to CDN provider A, B, and C,

respectively
5
. For the second level, HeteroCast will find the best

scheduling decision for each request based on the first level’s de-

termination. These two levels will repeat until we obtain the best

QoE. The workflow is shown in Algorithm 1. The intuition behind

this design is: the CDN performance is influenced by the overall

request number (i.e., the workload), but not which specific requests

5
To reduce the computation overhead, the search space is discretized into a certain

interval (e.g., 10%).
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Figure 6: The structure of the QoS predictor.
Algo. LR ARMA FC LSTM Ours

RMSE 0.0638 0.0202 0.0153 0.0124 0.0056

Table 1: Performance of the QoS predictor
are allocated. Therefore, the first-level will determine the QoS of

CDN providers. At the same time, for each possible allocation, the

best scheduling decision for each request can be optimally solved

by treating it as a graph matching problem (i.e., the second level).

It is also notable that we need to use some pruning methods (i.e.,

the Group-based and K-means-based pruning) to make HeteroCast

satisfy the real-time requirement of the livecast scenario (details of

the pruning methods are shown next).

4.1 Level 1: QoS Prediction
QoS predictor. With the inspiration provided by recent work [13,

21, 31], we propose to use a Deep Neural Network-based (DNN)

model to predict the QoS values of different CDN providers. We

use DNN mainly because it has both the generalization ability and

high prediction precision. However, instead of directly using the

exiting neural structures without any modification, we attempt

to integrate our observed insights when designing the model. In

detail, we build up two DNN blocks to separately characterize

the temporal dynamics and workload-related dynamics. Figure 6

shows the model structure. For the temporal dynamics, since the

Long-short-term-memory (LSTM) has shown great success in the

time-series prediction problem, we use it to process the input data.

For the workload dynamics, as we have observed that the CDN

performance will drop dramatically when the workload exceeds a

certain threshold (see Figure 4), we especially design the workload-

related block to capture this “piece-wise linear” relationship. As

shown in Figure 6, the historical workload data are input into

two DNN structures independently, each of which uses two fully

connected (FC) layers, and we then minus one of their outputs

from another (i.e., 𝑜𝑢𝑡1 − 𝑜𝑢𝑡2), and the result is input into one FC

layer which uses the “Relu” as the activation function. Since the

“Relu” function will be zero when the input is less than zero (i.e.,

𝑜𝑢𝑡1 − 𝑜𝑢𝑡2 ≤ 0), it is quite suitable to represent the “piece-wise

linear” relationship between QoS and workload. By using the above

DNN blocks, our proposed QoS model can well characterize the

dynamics of different CDN providers. We compare our QoS model

with other baselines, e.g., Linear Regression (LR), Autoregressive

Moving Average (ARMA), and use root mean square error (RMSE)

as the estimation function. The results are in Table 1 (we only take

the 𝑆𝑡𝑎𝑙𝑙𝐹𝑟𝑒𝑞 as the comparison metric, and others lead to similar

results), and we can see that our model has the highest precision.

Notably, the model with the workload-related block significantly

Figure 7: The structure of the DeepFM-based QoE model.
outperforms the model that only has the temporal block (i.e., the

LSTM in Table 1).

4.2 Level 2: QoE-aware Scheduling
The second level of HeteroCast can be divided into two stages,

i.e., 1) the QoE modeling stage and 2) the scheduling stage. In the

QoE modeling stage, HeteroCast will predict the QoE value of each

viewer based on the QoS prediction from the first level. Then in

the scheduling stage, HeteroCast will utilize the bipartite matching

method to find the best CDN assignment for each request.

The DeepFM-based QoE model: First, we try to facilitate a

more precise QoE model, which should be featured with the fol-

lowing properties: 1) it can well capture the non-linear relationship

between QoS and QoE, 2) and also well characterize the complicated

interactions between QoS and non-QoS factors.

To address the above concerns, we propose to use the DeepFM

to model the QoE of livecast viewers, and the DeepFM structure is

shown in Figure 7. We can see that it consists of two parts: 1) the

FM component, which extracts the feature interactions, 2) and the

deep component, which extracts non-linear feature relationships.

FM has been widely used in recommendation systems [10, 23].

The intuition of FM is to estimate the target value by modeling all

interactions between each pair of features. Mathematically, given

the target value 𝑦𝑓𝑚 and a real-valued feature vector 𝑥 ∈ R𝑛 (𝑛 is

the feature number), the FM model can be formulated as:

𝑦𝑓𝑚 (x) = 𝑤0 +
𝑛−1∑
𝑖=0

𝑤𝑖𝑥𝑖 +
𝑛−1∑
𝑖=0

𝑛−1∑
𝑗=𝑖+1

𝒗𝑻𝒊 𝒗𝒋 · 𝑥𝑖𝑥 𝑗 (1)

where𝑤0 is the global bias, and𝑤𝑖 is the linear weight of feature 𝑖 .

The 𝒗𝑻𝒊 𝒗𝒋 term denotes the factorized interaction part, in which 𝒗𝒊
∈ R𝑚 is the embedding vector for feature 𝑖 , and𝑚 is the dimension

of the embedding vector. Therefore, the learnable parameters of FM

model are𝑤0,𝑤𝑖 ∈ R and 𝒗𝑖 ∈ R𝑚 . In addition to the FM component,

DeepFM also uses the deep component to increase modeling ability

for non-linearity relationships. Especially, since the FM and deep

component share the same input embedding vector, DeepFM can

learn the low- and high feature interactions simultaneously.

DeepFM only has linear complexity with feature number 𝑛: its

FM component, which is responsible for the major complexity, can

be efficiently computed as it satisfies the following equation:

𝑛−1∑
𝑖=0

𝑛−1∑
𝑗=𝑖+1

𝒗𝑻𝒊 𝒗𝒋 · 𝑥𝑖𝑥 𝑗 =
1

2

𝑚∑
𝑓 =1

( (
𝑛−1∑
𝑖=0

𝑣
𝑓

𝑖
𝑥𝑖 )2 −

𝑛−1∑
𝑖=0

𝑣2
𝑖,𝑓
𝑥2𝑖 ) (2)
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(a) The distribution of group A in two

different days

(b) The distribution of group B in two

different days

Figure 8: The distributions of the same group are consistent
in different days.

Context None Device Channel (Device, Channel)

std. of 𝑣𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 0.112 0.094 0.097 0.056

Table 2: The std. of the ℎ𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 for different contexts.

in which the 𝑣
𝑓

𝑖
is the 𝑓 -th element of vector 𝒗𝒊 . This equation

only has linear complexity in both vector dimension𝑚 and feature

number 𝑛 (i.e., its computation complexity is in O(𝑚𝑛)). For more

proof details of Eq.(2), we recommend readers to [22].

DeepFM is quite suitable for modeling the QoE of livecast view-

ers, as it has the following advantages. First, DeepFM naturally

characterizes the complex relationship between multiple factors

(e.g., the QoS factors and non-QoS factors). By introducing the em-

bedding vector 𝒗, the interactions between feature 𝑖 and feature 𝑗

can be easily modeled by calculating their inner-product (i.e., 𝒗𝑻𝒊 𝒗𝒋 ).
Second, DeepFM supports non-linearity modeling of different fac-

tors. By utilizing the deep component, DeepFM can perform the

non-linear transformation on the latent space of the embedding

vectors, and thus it can well capture the non-linear relationship be-

tween the features and target values (e.g., the relationship between

QoS and QoE).

However, directly applying it in livecast scenario is still prob-

lematic: due to the massive user number, it is over-expensive to

calculate and store this customized vector for each viewer. As a re-

sult, we need to use some pruning methods to reduce the overhead.

Group-based pruning: To tackle this problem, we first use a

group-based pruning method. The critical insight that motivates

us is: although the QoE of different viewers is heterogeneous, the

viewers with the same “context” are more likely to have similar

QoE patterns. In our problem, we consider two context features,

i.e., the device type and channel category. We take the startup

latency to illustrate this insight. We calculate average 𝑣𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 of

the viewers sharing different numbers of the context features, and

present the standard deviation value (std.) in Table 2. We can see

that viewers matching on both two context features (i.e., (device,

channel)) have much smaller std., which demonstrates that these

viewers have similar QoE patterns. Actually, similar conclusion

has been obtained by previous work. For example, video sessions

sharing the same access point and IP-prefix tend to have similar

QoE [15, 16, 18, 24]; As a result, instead of training an embedding

vector for each viewer, we will train the vector for each combination

(device, channel category). In other words, the viewers in the same

group are treated equivalently, and we will run DeepFM over the

group rather than each individual request. We accept that this

group-based pruning method may harm the precision of the QoE

model, but it is essential for reducing the computation overhead.

Algo. LR ARMA SVM FC LSTM DeepFM

RMSE 0.3031 0.3715 0.2755 0.2641 0.2531 0.1418

Table 3: Performance of our QoE model
Additionally, since livecast viewers are sensitive to latency, we

also need to run this DeepFM model in a real-time way. Different

from some previous work [33], which aggregates all the requests

first before making decisions, we need to predict the viewer num-

ber of each group and generate the scheduling policy in advance.

Fortunately, predicting the size of each group is not that hard. Fig-

ure 8 presents how the distribution of viewers within the same

group changes over time. We can see that the dynamics of their

distribution are quite stable on different days for both groups A

and B. Taking Figure 8(a) as an example, we can see that both in

the 1st and 2nd day, the viewer number of group A at 400 min all

takes about 2.2% of total viewers. This phenomenon indicates that

we can cache the distribution of different groups in a distribution
lookup table, through which we can directly query the viewer

number of each group without aggregating the requests first. In

our experiment, storing this table only takes about 100 KB.

To demonstrate the effectiveness of our proposed method, we

compare the group-based DeepFM with other baseline algorithms,

including both traditional methods and some DNN-based methods.

The results are shown in Table 3. We can see that DeepFM can well

predict the QoE value and significantly outperform other baselines.

So far, we have obtained a precise DeepFM-based QoE model,

and we can also save the computation overhead by using a group-

based pruning method and a distribution lookup table. Then we

would like to compute the optimal assignment.

Graph-matching-based scheduling: The key idea of calculat-

ing the optimal assignment is to convert the problem into a bipartite

graph matching problem, which can be efficiently solved in polyno-

mial time [6, 17]. In detail, there will be four steps, and we present

them in Figure 9.

⊲ We first divide all the viewers into 𝑛𝑏 “buckets”, and all the

buckets have the same size. In Figure 9(a), all the viewers are divided

into four buckets: three buckets belong to CDN A, one bucket

belongs to CDN B (the “cluster” in Figure 9(a) will be explained

later).

⊲ We then construct an n-to-n weighted graph, in which the left

nodes are the buckets belonging to different groups, while the right

nodes are the buckets belonging to different CDNs. Especially, the

edge 𝑒𝑖 𝑗 between two nodes is the QoE value when assigning the

bucket (which belongs to group 𝑖) to the CDN 𝑗 .

⊲ After getting the weighted bipartite graph, we then calculate

the optimal assignment by finding the best matching sub-graph
6
.

Figure 9(c) shows an example.

⊲ Finally, we convert the best matching sub-graph into the as-

signment decision. As shown in Figure 9(d), the final decision is

that all viewers in Cluster B are assigned to CDN A, and the viewers

in Cluster A are equally assigned to CDN A and CDN B.

As a result, the key problem now is how to set the bucket size.

The criterion is that the viewers in the same bucket should be

“similar” (e.g., the viewers in the same group). A straight-forward

method is to set the bucket size as the number of viewers in the

smallest group, and other groups and CDN providers are divided

6
The best matching sub-graph is a graph where each node has only one edge, and the

sum of total edge weights is maximized.
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(a) Divide the users and CDNs into mul-

tiple “buckets”

(b) Generate the bipartite graph

by using the DeepFM-based QoE

model

(c) Calculate the best matching

sub-graph

(d) Convert the best matching sub-graph

into the final scheduling decision

Figure 9: Scheduling viewers based on graphmatching. Notably, to reduce the overhead of the graph-matching process, we further aggregate
“similar” groups into clusters by using their embedding vectors. This figure shows that there are two clusters of viewers scheduled to two CDN
providers. The clusters and CDNs are first divided into three “buckets”, and the buckets with different colors mean that they have different
properties (e.g., the buckets in grey color have different QoS from the bucket in yellow.).

according to this size (in our experiment, we use the ceiling value,

i.e., the smallest integer not less than the divided result). However,

since the complexity of the fastest bipartite-matching algorithm is

cubic in the bucket number 𝑛𝑏 (i.e., O(𝑛3
𝑏
)), this division method

may introduce too much computation overhead. For example, if

the smallest group size is 0.1% (i.e., 0.1% of total viewers are in the

smallest group), then there will be 𝑛𝑏 = ⌈ 100%
0.1% ⌉ = 1000 buckets (⌈∗⌉

is the ceiling function), which is too time-consuming to be solved

in a real-time way.

K-means-based pruning: Our idea for tackling this concern

is to cluster the “similar” groups, and the similarity between the

groups is estimated by the Euclidean distance of their embedding

vectors. Mathematically, the distance between group 𝑖 and 𝑗 is

defined as:

𝑑 = | |𝒗𝒊 − 𝒗𝒋 | |2 (3)

The groups will be aggregated into 𝐾 clusters, and 𝐾 is a hyper-

parameter. The rationale behind this clustering is that the value

of embedding vectors will affect the QoE prediction (i.e., the edge

weight of the bipartite graph), so the groups with similar embedding

vectors tend to have the similar QoE prediction value. There are

plenty of algorithms that can be used for the clustering, and in this

paper, we use K-means. Since the cluster size is much larger than

the group size, the bucket number can be significantly reduced, and

thus the best-matching sub-graph can be calculated efficiently.

5 EVALUATION
5.1 Methodology
Implementation: In our trace-driven experiments, we consider 5

CDN providers. For the first level, the searching space is descretized

into 10% interval (i.e., a possible𝑎𝑙𝑙𝑜𝑐𝑎𝑛𝑑𝑖 is (20%, 10%, 20%, 20%, 30%)).
Therefore, there will be 𝐶4

9
= 126 candidates in the out-loop.

For the QoS predictor, we use two LSTM layers (each with size

64) and one FC layer (with size 64) to construct the temporal block,

and we use two FC layers (each with size 64) cascaded by one FC

layer (with size 64) to build the workload block. The outputs of both

blocks will be merged into one FC layer, which uses the “linear”

activation function. Without additional explanation, all layers use

“Relu” as the activation function. The structure is shown in Figure 6.

In the second level, the dimension of the embedding vector of

DeepFM is set as𝑚 = 128, and its deep component consists with

two FC layers (each with size 128 and 64); the outputs from FM-

and the deep component will be concatenated together, and passed

into the output layer (with size 1). All the feature layers use “Relu”

except the output layer, which uses “sigmoid” function. The Details

of DeepFM are shown in Figure 7. For the scheduling stage, we set

cluster number as 𝐾 = 20

Baseline algorithms:We compare HeteroCast with the follow-

ing baseline algorithms:

⊲RoundRoubin: One of the most widely-used scheduling method

by nowadays livecast platforms. This algorithm will assign viewers

to CDN providers randomly.

⊲Exploration and exploitation (E2): One of the state-of-the-art

algorithms proposed in [14, 16]. This kind of algorithmwill schedule

asmany as viewers to the CDN that has the largest upper confidence

bound (UCB). As recommended in [16], we choose the Discounted-

UCB algorithm.

⊲Greedy: This algorithm will predict the QoS of different CDN

providers, and schedule as many viewers as possible to the CDN

with the highest QoS values.

⊲The original algorithm: The algorithm used by the data provider,

and we can get it through the collected data.

5.2 Results and Discussion
We first use three days of data to evaluate the performance of Het-

eroCast. The results are shown in Figure 10(a), and we can derive

the following observations. First, HeteroCast achieves the best per-

formance in all three days. We can see that from day1 to day3,

HeteroCast outperforms the second best algorithm (i.e., E2, Ran-

dom, and Greedy) by 9.61%, 10.09%, and 8.87% respectively. This

is expected, since by using a more precise QoE model, HeteroCast

can utilize the heterogeneity of different users and well address

the shortcomings of previous algorithms. Second, we can find that

among all baselines (i.e., E2, Greedy, Origin, and Random), no algo-

rithm can consistently outperform others. For example, on day1, the

best baseline is the E2 algorithm, while on day2 and day3, the best

algorithm becomes the Random and Greedy. The reason behind

this phenomenon is: since all baselines try to optimize QoE through

optimizing some proxies (such as different QoS factors), they are

all separated from getting the best average QoE. In contrast, Hete-

roCast directly uses the QoE as the optimization objective function,

which ensures that it can maintain good performance even in dif-

ferent scenarios. Moreover, instead of only comparing the average

QoE of HeteroCast, we further evaluate HeteroCast by comparing

the QoE obtained at each step of day1 with other algorithms, and

present the results in the form of CDF. The results are shown in

Figure 10(b), and the righter the curve locates, the better the algo-

rithm is. We can see that HeteroCast outperforms other baselines
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(a) The average QoE achieved by HeteroCast and other base-

lines.

(b) The QoE distribution of HeteroCast and other base-

lines at Day1.

(c) The decision time of HeteroCast.

Figure 10:ComparingHeteroCast with other baseline algorithms. As denoted, we can find thatHeteroCast improves the average QoE by 8.87%
to 10.09%. Especially, the QoE distribution of HeteroCast demonstrates that it outperforms the baselines at almost all the steps. Meanwhile,
the decision time of HeteroCast also illustrates that it can schedule viewers in a real-time way.

Figure 11: The HeteroCast with different
cluster number 𝐾 .

Figure 12: Comparing K-means pruning
method with the random cluster method.

Figure 13: The influence of the prediction
error.

at almost all the steps. In addition, we also analyze the decision

time of HeteroCast, and the results are provided in Figure 10(c). As

denoted, we can see that most of the decisions consume less than

1.4 seconds, while all the decisions are finished within 2 seconds.

This actually indicates that HeteroCast can work in a real-time way,

which satisfies the systematic requirement of the livecast scenario.

5.3 HeteroCast Deep Dive
In this section, we further study how different factors influence

HeteroCast performance. We first analyze the influence of the clus-

ter number 𝐾 . In detail, we investigate both the performance and

decision time. Figure 11 shows the results, and we can derive that

as the cluster number of K-means decreases from 40 clusters to 10

clusters, the average decision time of HeteroCast decreases signifi-

cantly (from 120 seconds per step to 0.5 seconds per step). This is

because by aggregating more items together, the bucket number in

the bipartite matching process will be reduced significantly. How-

ever, although we can speed up HeteroCast by using fewer clusters,

its performance may suffer degradation at the same time. As shown

in Figure 11, we can see that comparing to the HeteroCast with 40

clusters, the average QoE of HeteroCast with 20 clusters and 10

clusters will degrade about 4.4% and 13.5% respectively. This is ra-

tionale: with the cluster number decreasing, the viewers with large

heterogeneity are more likely to be “mistakenly” aggregated into

the same cluster, which therefore results in a sub-optimal sched-

uling decision. Considering the performance and the computation

overhead, we finally choose 𝐾 = 20. Moreover, we further study the

effectiveness of our K-means-based pruning method by comparing

it with the random cluster method (i.e., instead of using K-means,

this method aggregates groups randomly). The results are shown

in Figure 12, and we can find that for different cluster numbers, our

K-means method significantly outperforms the random method.

Especially, we observe that the performance of the random cluster

is almost equivalent even for different cluster numbers.

To better illustrate the importance of our DeepFM-based QoE

model, we also investigate the impact of its prediction error by

manually introducing noises, and the results are presented in Fig-

ure 13. We can obtain that with the prediction error increasing from

5% to 40%, the performance of HeteroCast will decrease by 3.7%

to 12.9%. It is also notable that the performance declines quickly

at the beginning, and then changes much more slowly. A possible

reason is: when the QoE model’s prediction error grows to a certain

level, HeteroCast will no longer characterize the heterogeneity of

different viewers, and it will make decisions like a random strategy.

6 CONCLUSION
We propose HeteroCast, a novel algorithm for the livecast viewer

scheduling problem. Different from previous scheduling methods,

which either have no consideration of the viewer heterogeneity or

use inaccurate QoE model as the optimization objective, HeteroCast

addresses the above problems by using a DeepFM-based QoE model

and a graph-matching technique. Through extensive experiments

on real-world traces, HeteroCast is demonstrated to significantly

outperform the existing viewer scheduling methods.
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