
QARC: VideoQuality Aware Rate Control for Real-Time Video
Streaming based on Deep Reinforcement Learning

Tianchi Huang3,1, Rui-Xiao Zhang1, Chao Zhou2∗, Lifeng Sun1∗
1 Dept. of Computer Science and Technology, Tsinghua University, Beijing, China

2 Beijing Kuaishou Technology Co., Ltd., China
3 Dept. of Computer Science and Technology, Guizhou University, Guizhou, China

{htc17,zhangrx17}@mails.tsinghua.edu.cn, zhouchao@kuaishou.com, sunlf@tsinghua.edu.cn

ABSTRACT
Real-time video streaming is now one of the main applications in
all network environments. Due to the fluctuation of throughput
under various network conditions, how to choose a proper bitrate
adaptively has become an upcoming and interesting issue. To tackle
this problem, most proposed rate control methods work for pro-
viding high video bitrates instead of video qualities. Nevertheless,
we notice that there exists a trade-off between sending bitrate and
video quality, whichmotivates us to focus on how to reach a balance
between them.

In this paper, we propose QARC (video Quality Aware Rate Con-
trol), a rate control algorithm that aims to obtain a higher perceptual
video quality with possible lower sending rate and transmission
latency. Starting from scratch, QARC uses deep reinforcement learn-
ing(DRL) algorithm to train a neural network to select future bi-
trates based on previously observed network status and past video
frames. To overcome the “state explosion problem”, we design a
neural network to predict future perceptual video quality as a vector
for taking the place of the raw picture in the DRL’s inputs.

We evaluate QARC via trace-driven simulation, outperforming
existing approach with improvements in average video quality
of 18% - 25% and decreasing in average latency with 23% -45%.
Meanwhile, comparing QARC with offline optimal high bitrate
method on various network conditions, we find that QARC also
yields a solid result.
ACM Reference Format:
Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, Lifeng Sun. 2018. QARC: Video
Quality Aware Rate Control for Real-Time Video Streaming based on Deep
Reinforcement Learning. In 2018 ACM Multimedia Conference (MM ’18),
October 22–26, 2018, Seoul, Republic of Korea. ACM, New York, NY, USA,
Article 4, 9 pages. https://doi.org/10.1145/3240508.3240545

1 INTRODUCTION
Recent years have witnessed a rapid increase in the requirements
of real-time video streaming [6]. Live video streams are being pub-
lished and watched by different applications(e.g., Twitch, Kwai,

∗ Corresponding authors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’18, October 22–26, 2018, Seoul, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5665-7/18/10. . . $15.00
https://doi.org/10.1145/3240508.3240545

Douyu) at any time, from anywhere, and under any network en-
vironments. Due to the complicated environment and stochastic
property in various network conditions, transmitting video stream
with high video bitrate and low latency has become the funda-
mental challenge in real-time video streaming scenario. Many rate
control approaches have been proposed to tackle the problem, such
as loss-based approach (TFRC [14], RAP [26]), delay-based ap-
proach (Vegas [2], LEDBAT (Over UDP) [29]), and model-based
approach (Google Congestion Control(GCC) [3], Rebera [18]). The
same strategy of them is to select bitrate as high as possible with
the permission of network condition. However, due to the inequal-
ity between high video quality and high bitrate, this strategy may
cause a large waste of bandwidth resources. For example, if a video
footage consists of darkness and few objects, a low bitrate may also
provide a barely satisfactory perceptual video quality but can save
large bandwidth resources, and the example is shown in Figure 1(a).

In this paper, we propose QARC(video Quality Awareness Rate
Control), a novel deep-learning based rate control algorithm aim-
ing to obtain high video quality and low latency. Due to that fixed
rules fail to effectively handle the complicated scenarios caused
by perplexing network conditions and various video content, we
leverage DRL-based method to select the future video bitrate, which
can adjust itself automatically to the variety of its inputs. In detail,
QARC uses DRL method to train a neural network to select the
bitrate for future video frames based on past time network status
observed and historical video frames. However, if we directly im-
port raw pictures as the inputs of state, the state space will cause
“state explosion” [7]. To overcome this, we meticulously divide this
complexed RL model into two feasible and useful models: one is
Video Quality Prediction Network (VQPN), which can predict fu-
ture video quality via previous video frames; the other is Video
Quality Reinforcement Learning (VQRL). VQRL uses A3C [21], a
DRL method, to train the neural network. The inputs of the VQRL
are past time network status observed and future video quality
predicted by VQPN, and the output is the bitrate for the next video
with high video quality and low latency.

We design the training methodologies for those two neural net-
works respectively. To train VQPN, in addition to some general
test video clips, we build up a dataset consisting of various types
videos including movie, live-cast show, and music video. For train-
ing VQRL, we propose an offline acceleration network simulator
to emulate real-world network environment with a trace-driven
dataset. We then collect a corpus of network traces for the simulator
with both packet-level traces and chunk-level public traces.

https://doi.org/10.1145/3240508.3240545
https://doi.org/10.1145/3240508.3240545

After deciding the architecture of two neural networks, we com-
pare QARC with existing proposed approaches, results of trace-
driven emulation show that QARC outperforms with existing pro-
posed approaches, with improvements in average video quality of
18% - 25% and decreases in average queuing delay of 23% - 45%.
Besides that, by comparing the performance of QARC with the
baseline which represents the offline optimal based on high bitrate
and low latency over different network conditions and videos, we
find that in all considered scenarios, despite a decrease in average
video quality of only 4% - 9%, QARC saves the sending rate with
46% to 60% and reduces the average queuing delay of 40% to 50%.

As a result, our contributions are shown as follows.
• Unlike the previous goal, we propose a novel sight to evaluate
QoE: aiming to optimize video quality rather than video
bitrate during the entire video session.
• To the best of our knowledge, we are the first to establish a
deep reinforcement learning (DRL) model to select sending
bitrate for future video frames based on jointly considered
perceptual video quality and network status observed in the
real-time video streaming scenario.
• Due to the complexity of input state, we derive the neural
network into two parts: the first part is a neural network
used to precisely predict future video quality based on the
previous video frames; the second part is an RL model used
to determine the proper bitrate based on the output of the
first model. By using the output video quality from the first
part instead of the raw video frames, the state space of the
RL model can be reduced efficiently.

2 MOTIVATION
In this section, we start by designing an experiment to answer the
fundamental question: With the enhancement of video encoding
technology, how will the correlation change between video quality
and video bitrate?

To solve this, we establish a testbed to assess the video qual-
ity score of selected videos with the given encoding bitrate. The
selected videos consist of three video clips, and each of them rep-
resents a video with static video scene (live-cast), a video with
dynamic video scene (live concert), and a video with hybrid static
video scene and dynamic video scene (MV) respectively.

In our experiment, we use Video Multi-Method Assessment Fu-
sion(VMAF), a smart perceptual video quality assessment algo-
rithm based on support vector machine(SVM) [23]. We compare the
video quality score of each video in different encoders. In detail, we
use three video encoders in our experiments including x264 [17],
x265 [36], and AV1 [8]. The first two encoders are popularly used
nowadays, and the last one is the state-of-the-art video encoder
proposed by Google.

As illustrated in Figure 1, comparing VMAF score of different
encoders on different videos and encoded bitrates, the results show
that as the encode bitrate increases, the rate of increase in video
quality score decreases. In addition, the refinement of encoder
technology does not eliminate this phenomenon. As a result, in
the real-time live streaming scenario, if we blindly select the high
bitrate, it will make the burden of the network transmission highly
increase with little enhancement of video quality.

(a) A sample video clip with static video background [25]

(b) A sample video clip with dynamic video scene[24]

(c) A sample video clip with both static and dynamic video scene[4]

Figure 1: This group of figures shows our motivation: In
the real-time live streaming scenario, high video bitrate is
equaled to high video quality, however, in some circum-
stance, high video quality only requires a low bitrate.

Receiver

Sender

Packet
Transmission

Packet
Reception

Video
Decoder

Video Quality
Prediction Network

Video Quality
Reinforcement

Learning

Video
Streaming
Session

Noise
Filter

Video
Encoder

Present

Video Frames

Video Quality
 Predicted

Bitrate
Selection

QARC

Future

Time

Feedback
Message
 Session

Figure 2: QARC’s System Architecture

Inspired by this, we propose a novel sight which aims to optimize
perpetual video quality rather than video bitrate during the entire
video session.

3 SYSTEM ARCHITECTURE
We start with introducing the conventional end-to-end transmission
process for real-time video streaming. The system contains a sender
and a receiver, and its transport protocol mainly consists of two
channels: the streaming channel and the feedback message channel.

GRU GRU GRU GRU…

GRU GRU GRU GRU…

CNN

CNN

…

FC

?

FuturePresent

Video
Encoder

Video Quality
Assessment

Bitrate -Video Quality

Timeline

fi-k fi-k+1 fi-1 fi fi+1…

Recurrent

Feature
Extraction

Figure 3: VQPN Architecture Overview

At the beginning, the sender deploys a UDP socket channel to send
the instant real-time video streaming packets P = {p0,p1, · · · ,pk },
denoted as a packet train [30], to the receiver through the streaming
channel. The receiver then feeds network status observed back to
the sender through the feedback channel. Based on this information,
the sender will select bitrate for next time period.

As shown in Figure 2, on the basis of conventional real-time
video streaming system architecture, we propose QARC, which is
placed on the sender side. Motivated by the unbalanced growth
of video quality and video bitrate as described in Section 2, we
design a RL model to “learn” the correlation among the previous
video frame, network status, and the best future bitrate. However,
if we use raw pictures directly as its inputs, the state will cause
“state explosion” [7]. Moreover, it will hard to train and validate in
an allowable time. To overcome this, we meticulously divide the
complexed RL model into two feasible and useful models, which
involves:

VideoQuality PredictionNetwork(VQPN), proposed by end-
to-end deep learning method, which predicts the future video qual-
ity metrics based on historical video frames;

Video Quality Reinforcement Learning(VQRL), which uses
A3C, an effective actor-critic method which trains two neural net-
works to select bitrates for future video frames based on network
status observations and the future video quality metrics predicted
by VQPN.

3.1 Video Quality Prediction Network(VQPN)
To help the RL model select a proper encoding bitrate for the next
frame, we need to let the model “know” the relationship between
the bitrate and corresponding video quality first. However, this
form of prediction is quite challenging, because the perceptual video
quality is closely related to the video itself. As shown in Figure 1, the
video type, brightness, and objects number all have a great impact
on the correlation between bitrate and VMAF. Motivated by the
effectiveness of the neural network in a prediction of time sequence
data, we design video quality prediction network(VQPN) helps the
RL model to predict the perceptual video quality of the future frame.

Figure 3 describes the VQPN’s neural network architecture, which
is mainly made up with a layer that extracts image features through
Convolutional Neural Network (CNN), and another layer which
capture temporarily features via Recurrent Neural Network (RNN).
Details are shown as follows.

Video Quality Metric: We use mean video quality metric to
describe the quality of the video over a period. For each raw video
frame fi in time-slot t, the video quality score Vfi ,bitrate is com-
puted by the raw video frames f and the bitrate at which the raw
video frames f will be encoded, then the mean score Vt,bitrate
is defined as the average value of Vf ,bitrate . In our study, we use
mean VMAF score, which is a score that is specifically formulated
by Netflix to correlate strongly with subjective MOS scores to de-
scribe the video quality of video frames. In particular, we normalize
the score into the distribution of the range from [0,1].

Input. VQPN takes state inputs Fi = [fi−k , fi−k+1, · · · , fi] to its
neural network, in which fi reflects the i-th sampled video frame.

Extract image features: VQPN uses CNN layers to extract
frame features, which can obtain the spatial information for each
video frame in inputs Fi .

Capture temporal features: Upon extracting frame features,
VQPN uses a double-layered recurrent layer [5] to further extract
temporal characteristics of the video frames Fi in past k sequences.

Output: The outputs of VQPN are the prediction of the video
quality assessment in the next time slot t + 1 of candidate bitrates,
denoted as Vt+1.

Loss function: We use mean square error(MSE) to describe the
loss function, besides that, we also consider to add regulation to
the loss function to decrease the probability of over fitting that on
training set. Let V̂t denote the real vector of video quality score of
the video in time t. Therefore, the loss function can be written as
(Eq. 1), where λ is the regulation coefficient.

Lt (V ;θ) = 1
N

∑
|Vt − V̂t |

2 + λ | |θ | |2 (1)

3.2 Video Quality Reinforcement
Learning(VQRL)

In our study, we aim to let the neural network “learn” a video bitrate
selection policy from observations instead of using preset rules in
the form of fine-tuned heuristics. Specifically, our approach is based
on RL. The sender, serving as an agent in RL problem, observes a
set of metrics including future video quality and previous network
status as the state. The neural network then selects the action as the
output which denotes the video bitrate of next time-slot. Then the
goal is to find the policy that maximizes the quality of experience
(QoE) perceived by the user. In our scheme, QoE is influenced by
video quality, latency, and smoothness.

As shown in Figure 4, We formulate “video quality first” real-
time video streaming problem within A3C framework, named as
video quality reinforcement learning (VQRL). Detailing our system
components, which include:

State:We consider the metrics which can be obtained by both
sender and receiver from feedback message session. VQRL’s learn-
ing agent pushes the input state of time-slot t st = {p,v, s, r ,d, l}

Actor network

State St

Critic network

Vt+1,0 Vt+1,1 Vt+1,n-1 Vt+1,n…

F
C

M
E
R
G
E

st-k+1 st-k+2 st-1 st…

Future video quality predicted

Past sending bitrate

rt-k+1 rt-k+2 rt-1 rt…
Past receiving rate

dt-k+1 dt-k+2 dt-1 dt…
Past delay gradient

lt-k+1 lt-k+2 lt-1 lt…
Past loss ratio

C
N
N

C
N
N

C
N
N

C
N
N

F
C

F
C

Policy
πθ(St,at)

…

Value

vπθ(St)

FFT�UHDO FFT.image

st-k+1 st-k+2 st-1 st

Past sending video quality

C
N
N

Figure 4: The Actor-Critic algorithm that VQRL uses to gen-
erate sending bitrate selection policies

into neural network, where p means the past sending video qual-
ity, v represents the future video quality predicted by VQPN, s
is the video sending rate of the past k sequences which is equal
to the throughput measurement from the uplink of the sender; r
represents the receiving bitrate of past k sequences measured by
the receiver; d is the delay gradient which is measured between a
sender and receiver of the recent k sequences; l is the packet loss
ratio of the previous k sequences.

To better estimate the network condition in our scenario, we
need precisely measure queuing delay of each packet. However, due
to the clocks on both sides are unsynchronized, the measurements
are unreliable. Motivated by [3], we also use delay gradient to solve
the problem. More details can be seen in [3, 16].

Besides that, we assume receiving bitrate as a form of signal.
Then, the Fast Fourier Transform (FFT) can be used to decompose
signals into a complex-valued function of frequency, whose abso-
lute value represents the amount of that frequency present in the
original function, whose complex argument is the phase offset of
the basic sinusoid in that frequency. [9] As a result, we add the
additional features into input which decomposed the receive rate
sequence through FFT. The results that validate its improvement
will be discussed in Section 4.2;

Action: The agent needs to take action when receiving the state,
and the policy is the guide telling the agent which action will be
selected in the RL problem. In general, the action space is discrete,
and the output of the policy network is defined as a probability
distribution: f (st ,at), meaning the probability of selection action
at being in state st . In this paper, the action space contains the
candidate of sending bitrate in the next time-slot t .

In traditional RL problem, the state space is small and can be
represented in a tabular form, and there have been a lot of effective
algorithms to solve this kind of problems, such as Q-learning and
SARSA [32]. However, in our problem, the state space is fairly large,
e.g., loss rate and received bit rate are continuous numbers, so
it is impossible to store the state in a tabular form. To tackle this
barrier, we use a neural network [13] to represent the policy, and the

weights of the neural network, we use θ in this paper, are called the
policy parameters. In recent researches, the technique of combining
neural network and RL is widely used to solve large-state-space RL
problems [20, 31] and shows its exceptional power;

Reward: Our reward (QoE) will be described in Section 4.1;
Training: In the RL problem, after taking a specific action in

state st , the agent will get a corresponding reward , and the goal
for the RL agent is to find the best action in each state which can
maximize the accumulated reward rt and as a result, the policy
should be changed in the direction of achieving this goal. In this
paper, we use A3C [21], a state of the art actor-critic RL algorithm,
as the fundamental algorithm of our system, and in this algorithm,
policy training is done by performing policy gradient algorithm.

The key thought of the policy gradient algorithm is to change the
parameter in the direction of increasing the accumulated reward.
The gradient direction is the direction in which a function increases.
The gradient of the accumulated reward with respect to policy
parameter θ can be written as:

∇Eπθ [
∞∑
t=0

γ t rt] = Eπθ [∇θ loдπθ (s,a)A
πθ (s,a)] (2)

We can use: Eθ [∇θ loдπθ (s,a)Aπθ (s,a)] as its unbiased form,
whereA(st ,at)is called the advantage of action at in state st which
satisfies the following equality: A(at , st) = Q(at , st) −V (st), where
V (st) is the estimate of the value function of state st and Q(at , st)
is the value of taking certain action at in state st , and it can also be
written as:

Q(at , st) = rt + γV (st+1 |θt+1) (3)

Thus, policy parameter will be updated as:

θ ← θ + α
∑
t
∇θ loдπθ (st ,at)A(st ,at) (4)

in which the parameter α represents the learning rate. To calculate
A(st ,at), we need to have the V (st) first, and we can estimate it in
the value network. The value network aims to give a reasonable
estimate of the actual value of the expected accumulated reward of
state st , written as V (st |θv). Continuing the same line of thought,
value network also uses neural network to represent the large state
space. In this paper, we use n-step Q-learning to update the network
parameter [21], and for each time, the error between estimation
and true value can be represented as Errt = (rt + γV (st+1 |θv) −
V (st |θv))

2, where V (st |θv) is the estimate of V (st), and to reduce
the Errt , the direction of changing parameter θv is the negative
gradient of it, and in A3C, the gradient will be added up with respect
to t , so the value network will be updated as:

θv ← θv −
∑
t
∇θv Errt (5)

where α is the learning rate. Inspired by [20, 21], we also add the
entropy of policy in the object of policy network, which can ef-
fectively discourage converging to suboptimal policies. See more
details in [21]. So the update of θ will be rewritten as:

µλ

Saturated traces

Queue

Sending rate

Figure 5: The working principle of the network simulator.

θ ← θ + α
∑
t
∇loдπθ (st ,at)A(st ,at) + β∇θH (πθ (·|st)) (6)

where β is also a hyper-parameter, H (·) is the entropy of the policy.
After convergence, the value network will be abandoned, and we
only use policy network to make decisions;

Multiple training: To accelerate the training process, as sug-
gested by [21], we modify VQRL’s training in the single agent as
training in multi-agents. Multi-agents training consists of two parts,
a central agent and a group of forwarding propagation agents. The
forward propagation agents only decide with both policy and critic
via state inputs and neural network model received by the cen-
tral agent for each step, then it sends the n-dim vector containing
{state,action, reward} to the central agent. The central agent uses
the actor-critic algorithm to compute gradient and then updates
its neural network model. Finally, the central agent pushes the
newest model to each forward propagation agent. Note that this
can happen asynchronously among all agents, for instance, there is
no locking between agents. By default, VQRL with multiple training
uses 8 forward propagation agents and 1 central agent;

Train with network simulator: To train VQRL, we first con-
sider to train our neural network model in real-world network
conditions, e.g., deploying the model on the edge server. With the
increasing number of session, the model will finally converge. How-
ever, training the model online is hard to converge because RL
training should meet almost all network status as the state. We
then decide to train the model in simulated offline networks. Hence,
we are a facing new challenge: How to design a fast-forward net-
work simulator which can precisely compute the latency with given
saturated trace and sending rate?

To train our model, our training data should consist of queuing
delay rather than one-way delay. So, our simulator should simulate
the process of the packets coming and leaving in different network
conditions, and keep track of the timestamps, by which we can
get the corresponding queuing delay. Inspired by [35] and [22], we
use saturated network trace to generate queuing delay data. Seen
in Figure 5, assuming the distribution of packets arrival and leave
fits closely to the Poisson process [35], we use sending bitrate and
bandwidth in saturated network traces as the arriving rate λ and
leaving rate µ, respectively.

4 EVALUATION
4.1 Datasets and Metrics
Video dataset:We train and test VQPN on two video datasets, that
is, VideoSet: a large-scale compressed video quality dataset based

on JND measurement and self-collected video datasets: a video
quality dataset involves live-casts, music-videos, and some short
movies. For each video in datasets, we measure its VMAF with
the bitrate of 300Kbps to 1400Kbps, and the reference resolution is
configured as 800× 480, which is the same size as default resolution
that observed by the receiver during the real-time live streaming.
We generate the VMAF video datasets using both x264 and x265
encoder.

Network traces: To train and evaluate VQRL, the first thing
we must do is to generate saturated network trace datasets. How-
ever, these types of network traces are hard to be recorded, even
public datasets are extremely limited. For example, Cellsim [35]
only provides a small number of saturated network traces which
describe the cellular network conditions instead of all network en-
vironments, which hardly afford us to make our neural network
converge. Thus, we consider to collect datasets in two ways:
• Packet-level network traces:We use a proprietary dataset
of packet-level live-cast session status from all platforms
APPs of Kwai collected in January 2018. 1 Motivated by
the one-way-delay estimation method in Ledbat [29], We
generate 2,300 real network traces from packet train datasets.
• Chunk-level network traces:We also collect hybrid net-
work traces datasets which consists of different network
datasets, such as FCC [27] and Norway [28]. The FCC dataset
is a broadband dataset, and Norway dataset is mainly col-
lected in 3G/HSDPA environment. In short, we generate
1,000 network traces from the datasets.
• Synthetic network traces:We generate a synthetic dataset
using a Markovian model where each state represented an
average throughput in the aforementioned range.[20] Thus,
we create a dataset in over 500 traces which can cover a
board set of network conditions.

QoE metrics: For a better result, we consider designing Quality
of Experience (QoE) metric based on previous scheme. In the recent
research [20], QoE metrics are evaluated as a method with 4 essen-
tial factors: bitrate received, loss ratio, latency, and delay gradient,
with no considering video quality metric. Still, in this paper, after
rethinking the correspondence between video quality and video
bitrate, we redefine the QoE metric as (Eq. 7)

QoE =
N∑
n=1
(Vn − αBn − βDn) − γ

N−1∑
n=1
|Vn −Vn−1 | (7)

for a live video with N time-slots. Where Vn denotes the video
quality of time n, Bn is the video bitrate that the sender selects, and
Dn represents the delay gradient measured by the receiver. The
final term comprises the smoothness of video quality. Coefficient
α , β and γ are the weight to describe their aggressiveness.

4.2 Implementation
We now describe the implementation of QARC2. In this section, we
decide the best hyper-parameters and explain the implementation
of VQPN and VQRL respectively.

Time-slot t: In this paper, we set time-slot t as 1s.
1Kwai is a leading platform in China which has over 700 million users worldwide, and
millions of original videos are published on it every day.
2https://github.com/godka/qarc

(a) The curves of average reward under different neu-
ral network model including CNN, FNN, and GRU.

(b) Comparing VQRL which uses FFT with the one
without using it.

(c) Sweeping sequence length and number of filters
in VQRL’s neural network architecture.

Figure 6: VQRL’s implementation

filter number hidden units Learning Rate
1e-3 1e-4 1e-5 6e-6

32 32 4.88 5.20 4.42 4.24
32 128 4.40 4.28 4.24 4.13
64 64 3.94 3.93 4.22 4.31
64 128 4.92 4.17 4.16 4.17
128 64 4.20 3.80 4.17 4.23
128 128 4.52 3.86 4.15 3.99

Table 1: Comparing performance (SMAPE%) of VQPN with
different filter number and hidden units. Results are col-
lected under learning rate=1e-3,1e-4,1e-5, and 6e-6 respec-
tively.

VQPN: The introduced VQPN help VQRL predict future video
quality, but we have yet studied how to set the hyper-parameters.
Table 1 shows our results with different settings of filter number,
hidden units, and learning rate. Results are summarized as sym-
metric mean absolute percentage error (SMAPE) metric, which is
computed as Eq. 8:

SMAPE = 100%
n

n∑
t=1

|Ft −At |

(|At | + |Ft |)/2
. (8)

Here At is the actual value and Ft is the forecast value. Empir-
ically, filter number = 128, hidden units = 64, and learning rate =
1e-4 yields the best performance.

To sum up, VQPN passes t = 5 past time video, and it samples 5
frames for each time, totally k = 25 previous frames as input to the
neural network architecture, and each size of the frame is defined
as [64,36] with 3 channels. The input frames then extract features
in 128-dimension vector via a feature extraction layer respectively.
The feature extraction layer is constructed with 5 layers, a conv
layer with 64 filters, each of size 5 with stride 1, an average pooling
layer with filter number 3× 3, an another conv layer with 64 filters,
each of size 3 with stride 1, also, a max pooling layer with filter
number 2×2. Finally, the feature extraction layer passes the features
into a hidden layer with 64 neurons.

Considering the frame sequence as a time series data, a recurrent
network is designed to estimate future video quality. VQPN passes
k = 25 feature maps to a gated recurrent unit(GRU) layer with 64

hidden units, then the states of that layer are passed to another
GRU layer with the same hidden units. A hidden layer is then
connected to the hidden output of the last GRU layer. Finally, VQPN
uses the final output as a 5-dimension vector, and for each value
in the vector represents the video quality score of video bitrate
{300, 500, 800, 1100, 1400} Kbps.

During the training process, we use Adam gradient optimizer
to optimize VQPN with learning rate α = 10−4. In this work, we
use TensorFlow [1] to implement this architecture, in particular,
we leveraged the TFLearn deep learning library’s TensorFlow API
to declare VQPN.

VQRL: In this section, we describe how to choose the best neural
network model of VQRL. Firstly, we design three different models
which are based on FNN (Feedback Neural Network), CNN, and
LSTM (Long-Short Term Memory) respectively. We set sequence
length k = 5,We use the QoE metric with α = 0.2, β = 1.0 and
γ = 1.0 as the baseline reward. As illustrated in Figure 6(a), the
CNN model increase the average QoE by about 39% compared with
the LSTM model and about 83% compared with the FNN model.

Then, we consider validating the importance of adding FFT fea-
ture into inputs. We set up two CNN models, one of them is es-
tablished with FFT feature. We set sequence length k = 20 with
the same environment as the first experiment. Results are shown
in Figure 6(b), which implies that the CNN model with using FFT
feature can provide a high reward with the improvement of about
29% compared with the CNN model without using FFT feature.

Finally, we investigate how CNN parameters inflect output re-
sults. In our experiment, the different parameters are set as {k =
5, c = 64}, {k = 10, c = 64} and {k = 20, c = 128}, in which k is the
input sequence length and c is the CNN channel size. As shown in
Figure 6(c), with the increase of k and c , the performance increases.
However, when we choose parameter { k = 20, c = 128}, the average
QoE only increases 1% compared with parameter {k = 10, c = 128},
so in consideration of calculation complexity, we finally choose
{k = 10, c = 64}. Additionally, the action space is configured as 5,
which is same as the output of VQPN. During the training process,
we use Adam gradient optimizer to optimize it, and the learning
rate for the actor and critic is set as 10−4 and 10−3, respectively.

Figure 7: Comparing QARC with previously proposed approaches on the 4G network environments: The QoE of QARC is
considered as α = 0.2, β = 10.0,and γ = 1.0. After testing three video clips, results are shown as average queuing delay, average
sending rates, and average video quality.

Queuing Delay(s) Sending Bitrate(Mbps) Video Quality[0,1]
Broadband Network Uplink

0.0

0.3

0.7

1.0

Av
er
ag

e
Va

lu
e

Baseline α = 0.2 β = 10.0
γ = 1.0

α = 0.1 β = 10.0
γ = 0.0

α = 2.0 β = 0.1
γ = 0.0

Queuing Delay(s) Sending Bitrate(Mbps) Video Quality[0,1]
Broadband Network Uplink

0.0

0.3

0.7

1.0

Av
er
ag

e
Va

lu
e

Baseline α = 0.2 β = 10.0
γ = 1.0

α = 0.1 β = 10.0
γ = 0.0

α = 2.0 β = 0.1
γ = 0.0

Queuing Delay(s) Sending Bitrate(Mbps) Video Quality[0,1]
Broadband Network Uplink

0.0

0.3

0.7

1.0

Av
er
ag

e
Va

lu
e

Baseline α = 0.2 β = 10.0
γ = 1.0

α = 0.1 β = 10.0
γ = 0.0

α = 2.0 β = 0.1
γ = 0.0

Figure 8: Comparing QARC with different QoE and the baseline which is computed as an offline optimal value based on high
video bitrate. We evaluate several QARCmethods and a baseline on the broadband network environments. Like the process of
Figure 7, after testing three video clips, results are shown as average queuing delay, average sending rates, and average video
quality which are against the performance of the baseline value.

Queuing Delay(s) Sending Bitrate(Mbps) Video Quality[0,1]
4G Network Uplink

0.0

0.3

0.7

1.0

Av
er
ag

e
Va

lu
e

Baseline α = 0.2 β = 10.0
γ = 1.0

α = 0.1 β = 10.0
γ = 0.0

α = 2.0 β = 0.1
γ = 0.0

Queuing Delay(s) Sending Bitrate(Mbps) Video Quality[0,1]
4G Network Uplink

0.0

0.3

0.7

1.0

Av
er
ag

e
Va

lu
e

Baseline α = 0.2 β = 10.0
γ = 1.0

α = 0.1 β = 10.0
γ = 0.0

α = 2.0 β = 0.1
γ = 0.0

Queuing Delay(s) Sending Bitrate(Mbps) Video Quality[0,1]
4G Network Uplink

0.0

0.3

0.7

1.0

Av
er
ag

e
Va

lu
e

Baseline α = 0.2 β = 10.0
γ = 1.0

α = 0.1 β = 10.0
γ = 0.0

α = 2.0 β = 0.1
γ = 0.0

Figure 9: Like the process of Figure 8, comparing QARC with different QoE and the baseline which is computed as an offline
optimal value based onhigh video bitrate.We evaluate several QARCmethods and a baseline on the 4Gnetwork environments.

Training time: To measure the performance limitation of pre-
dicting future video quality, we profile VQPN’s training process. To
know when the network converges, we use early stopping method
to train the neural network. Totally, training VQPN requires ap-
proximately an hour on a single GPU GTX-1080Ti.

For measuring the overhead of the neural network of VQRL, we
also introduce the training process for it. To train this, we use 8
agents to update the parameters of the central agent in parallel.
The neural network will converge in 22 hours, or less than 5 hours
using 20 agents.3.

4.3 Experiments and Results
In this section, we establish a real-time video streaming system to
experimentally evaluate QARC, and use Mahimahi [22], a trace-
driven emulator, to simulate various network environments. Our
results answer the following questions:

(1) Comparing QARC with previously proposed approaches in
different video clips, is QARC the best?

(2) Compared with the baseline algorithm based on high video
bitrate and low latency, how much improvement does QARC
gain on the results?

3This experiment is worked on AWS with an instance in 20 CPUs and 140G RAM size.

(3) How does the coefficient α , β , and γ affect the outcome of
QARC?

QARC vs. Existing approaches In this experiment, we eval-
uate QARC with existing proposed heuristic methods on several
network traces which represent various network conditions by
using trace-driven emulation. After running the trace for each
approach, we collect the average queuing delay, average video qual-
ity and average sending rate from the receiver. We compare their
performance to different video clips. In this experiment, QARC is
compared with Google Hangout, a famous video conference app,
Compound TCP[12], and Vegas [2]. As illustrated in Figure 7, one
of the results show that QARC outperforms with existing proposed
approaches, with improvements in average video quality of 18%
- 25% and decreases in average queuing delay of 23% - 45%. Espe-
cially, we observe that QARC also saves the sending rate, which
also performs well.

Video quality first vs. Bitrate first In this experiment, we aim
to evaluate QARC with different QoE parameters and the baseline
algorithm which uses the policy based on high video bitrate. Specif-
ically, we compare QARC to the baseline algorithm in terms of
queuing delay, the sending rate, and the video quality of the entire
video session.

As shown in Figure 8 and Figure 9, compared with the base-
line algorithm on broadband and 4G network environments, the
performance of QARC outperforms the baseline based on greedy
algorithm. In the broadband network environment, despite a shrink-
age in average video quality of 4% - 9%, QARC decreases the sending
rate of 46% to 60% and reduces the average queuing delay 4 from
0.5s to 0.04s . It is noteworthy that if the footage of the video does
not switch violently (Figure 8(b)), for instance, in video conference
scenario, sending bitrate decreases from 51% to 62% while video
quality reduces less than 5%. We can also find similar results in 4G
network environments, and details can be seen in Figure 8.

Influence of α ,β and γ : Figure 8 and Figure 9 show the results
of QARC with different initial QoE reward parameters. Unsurpris-
ingly, initialize QoE reward with small latency coefficient α yield
high-performance improvement over the one with a bigger α in
wired network conditions, however, in 4G network environments,
it performs a very different performance. In conclusion, there is no
optimal pair can fit any network conditions.

5 RELATEDWORK
5.1 Real-time Rate Control Methods
Traditional real-time rate control methods have been proposed and
applied about two decades. These schemes are mainly classified
into three types, loss-based bitrate approach, delay-based bitrate
approach and model-based bitrate approach.

Loss-based: Loss-based approaches such as TFRC [14] and rate
adaptation protocol (RAP) [26], have been widely used in TCP
congestion control, and these methods increase bitrate till packet
loss occurs, which means that the actions are always late, because
when packet loss occurs, latency also increases. Furthermore, using
packet loss event as the control signal may cause its throughput to
be unstable, especially in error-prone environments [11].

Delay-based: Delay-based approaches, try to adjust sending
rate to control the transmission delay, can be divided into the end-to-
end delay (RTT) approaches, for example, TCP Vegas [2]; one-way
delay approaches, such as LEDBAT (Over UDP) and TCP-LP [19, 29];
and delay gradient approaches [3].

Model-based: Model-based bitrate control method, such as Re-
bera [18], GCC [3] and so on, they control sending bitrate based
on previous network status observed including end-to-end latency,
receiving rate which is measured by the receiver, and past sending
bitrate, loss ratio which is measured by the sender.

5.2 Video Quality Metrics
Video quality is a characteristic to measure the perceived video
degradation while passing through a video transmission system.
Up to now, the video quality metrics which are commonly used are
shown as follows.

PSNR: A traditional signal quality metric [15], which is directly
derived from mean square error (MSE) or its square root (RMSE).
Due to the simplicity and low complexity of its calculation, PSNR
continues to be the most popular evaluation of the video quality.

4In this paper, queuing delay is regarded as self-inflicted delay, which is a lower bound
on the 95% end-to-end delay that must be experienced between a sender and receiver,
given observed network behavior. [35]

However, the result cannot precisely reflect the visual quality seen
by human eyes.

SSIM: An image quality metric, submitted in 2004 by Wang et
al. [33]. Unlike previously proposed video quality evaluation cri-
teria, SSIM uses the structural distortion measurement instead of
mean square error. Due to the consideration of the whole picture,
SSMI can give a properer evaluation of the video quality experi-
enced by users. However, SSIM is not a professional tool for video
quality assessment.

VMAF:Video Multi-method Assessment Fusion (VMAF) [23] is
an objective full-reference video quality metric which is formulated
explicitly by Netflix to estimate subjective video quality based on
a reference and distorted video sequence. Using machine learning
techniques, VMAF provides a single output score in the range of
[0, 100] per video frame. In general, this metric is focused on describ-
ing the quality degradation due to compression and rescaling and
it is closer to users’ real experience of video quality than previous
schemes.

5.3 Deep Reinforcement Learning Approaches
Deep reinforcement learning, one of the deep learning methods,
aims to maximize the reward of each action taken by the agent in
given states per step. Recent years, several approaches (e.g. [10, 20,
35]) have been made to optimize the network control algorithm.

Remy: Remy [34] decides with “a tabular method”, and it collects
experience from the network simulator with network assumptions,
however, like all TCP variants, when the real network deviates from
Remy‘s input assumption, performance degrades.

Pensieve:Mao et al.[20] develop a system that uses deep rein-
forcement learning to select bitrate for future video chunks. Unlike
most of the adaptive bit rate(ABR) algorithms, Pensieve does not
need any predefined rules and assumptions to make decisions, and
it can automatically adjust itself to the change of network condi-
tions. By comparing with the existing ABR algorithms, Pensieve
performs very well.

6 CONCLUSION
In this paper, we propose QARC, a deep-learning-based rate control
algorithm in the real-time video streaming scenario. Unlike previ-
ously proposed approaches, we try to get a higher video quality
with possibly lower sending rate. Due to that fixed rules cannot
effectively handle the complicated scenarios caused by perplexing
network conditions and various video content, we use deep rein-
forcement learning to select the future video bitrate, which can
adjust itself automatically to the change of its inputs. To reduce
the state space of the reinforcement learning model, we derive the
neural network into two parts and train them respectively. After
training on a board set of network data, we explore the performance
of QARC over several network conditions and QoE metrics. We
find that QARC outperforms existing rate control algorithms.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable feedback. The
work is supported by the National Natural Science Foundation of
China under Grant No. 61472204 and 61521002, Beijing Key Labora-
tory of Networked Multimedia No. Z161100005016051, and Key Re-
search and Development Project under Grant No. 2018YFB1003703.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[2] Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End to end conges-
tion avoidance on a global Internet. IEEE Journal on selected Areas in communica-
tions 13, 8 (1995), 1465–1480.

[3] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016.
Analysis and design of the google congestion control for web real-time communi-
cation (WebRTC). In Proceedings of the 7th International Conference on Multimedia
Systems. ACM, 13.

[4] Jolin Tsai’s Official Channel. 2015. Jolin Tsai, I Love, I Embrace. (2015). https:
//www.youtube.com/watch?v=xrJvKZfBDa4

[5] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
arXiv: Neural and Evolutionary Computing (2014).

[6] Cisco. 2017. Cisco Visual Networking Index: Forecast and Method-
ology, 2016-2021. (2017). https://www.cisco.com/c/dam/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.pdf

[7] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. 2012.
Model Checking and the State Explosion Problem. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–30. https://doi.org/10.1007/978-3-642-35746-6_1

[8] Alliance for Open Media. 2018. AV one encoder. https:/aomedia.org/. (2018).
[9] Matteo Frigo. 1999. A fast Fourier transform compiler. programming language

design and implementation 34, 5 (1999), 169–180.
[10] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella. 2017. D-DASH: A Deep Q-

Learning Framework for DASH Video Streaming. IEEE Transactions on Cognitive
Communications and Networking 3, 4 (Dec 2017), 703–718. https://doi.org/10.
1109/TCCN.2017.2755007

[11] Yufeng Geng, Xinggong Zhang, Tong Niu, Chao Zhou, and Zongming Guo.
2015. Delay-constrained rate control for real-time video streaming over wireless
networks. In Visual Communications and Image Processing (VCIP), 2015. IEEE,
1–4.

[12] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[13] Martin T Hagan, Howard B Demuth, Mark H Beale, et al. 1996. Neural network
design. Vol. 20. Pws Pub. Boston.

[14] Mark Handley, Sally Floyd, Jitendra Padhye, and Jörg Widmer. 2002. TCP friendly
rate control (TFRC): Protocol specification. Technical Report.

[15] Alain Hore and Djemel Ziou. 2010. Image Quality Metrics: PSNR vs. SSIM. (2010),
2366–2369.

[16] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng Sun. 2018. Delay-
Constrained Rate Control for Real-Time Video Streaming with Bounded Neural
Network. In Proceedings of the 28th ACM SIGMM Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV 2018, Amsterdam,
Netherlands, June 12-15, 2018. 13–18. https://doi.org/10.1145/3210445.3210446

[17] MulticoreWare Inc. 2006. x264 encoder. https://x264.org/. (2006).
[18] Eymen Kurdoglu, Yong Liu, YaoWang, Yongfang Shi, ChenChen Gu, and Jing Lyu.

2016. Real-time bandwidth prediction and rate adaptation for video calls over
cellular networks. In Proceedings of the 7th International Conference on Multimedia
Systems. ACM, 12.

[19] Aleksandar Kuzmanovic and Edward W Knightly. 2006. TCP-LP: low-priority
service via end-point congestion control. IEEE/ACM Transactions on Networking

(TON) 14, 4 (2006), 739–752.
[20] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive

video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 197–210.

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In International Conference on
Machine Learning. 1928–1937.

[22] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: accurate record-and-
replay for HTTP. (2015), 417–429.

[23] Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical video
quality metric. In Broadband Multimedia Systems and Broadcasting (BMSB), 2017
IEEE International Symposium on. IEEE, 1–2.

[24] KING RECORDS. 2015. AKB48, Kibouteki Refrain. (2015). https://www.bilibili.
com/video/av1596954

[25] ROCK RECORDS. 2015. Genie Chuo, Be Yourself. (2015). https://www.youtube.
com/watch?v=GLGpsMvp7Jo

[26] R. Rejaie, M. Handley, and D. Estrin. 1999. RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the Internet. In INFOCOM
’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, Vol. 3. 1337–1345 vol.3. https://doi.org/10.1109/
INFCOM.1999.752152

[27] Measuring Fixed Broadband Report. 2016. Raw Data Measuring Broadband Amer-
ica 2016. https://www.fcc.gov/reports-research/reports/measuring-broadband-
america/raw-data-measuring-broadband-america-2016. (2016). [Online; accessed
19-July-2016].

[28] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen. 2013. Com-
mute path bandwidth traces from 3G networks: analysis and applications. (2013),
114–118.

[29] Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. 2010. LEDBAT:
The New BitTorrent Congestion Control Protocol.. In ICCCN. 1–6.

[30] Natsuhiko Sato, Takashi Oshiba, Kousuke Nogami, Anan Sawabe, and Kozo
Satoda. 2017. Experimental comparison of machine learning-based available
bandwidth estimation methods over operational LTE networks. In Computers
and Communications (ISCC), 2017 IEEE Symposium on. IEEE, 339–346.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[32] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[33] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600–612. https://doi.org/10.1109/TIP.2003.
819861

[34] Keith Winstein and Hari Balakrishnan. 2013. TCP ex machina: computer-
generated congestion control. acm special interest group on data communication
43, 4 (2013), 123–134.

[35] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
forecasts achieve high throughput and low delay over cellular networks. (2013),
459–471.

[36] x265.org. 2015. The x265 website. https://x265.org/. (2015).

https://www.youtube.com/watch?v=xrJvKZfBDa4
https://www.youtube.com/watch?v=xrJvKZfBDa4
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1109/TCCN.2017.2755007
https://doi.org/10.1109/TCCN.2017.2755007
https://doi.org/10.1145/3210445.3210446
https://www.bilibili.com/video/av1596954
https://www.bilibili.com/video/av1596954
https://www.youtube.com/watch?v=GLGpsMvp7Jo
https://www.youtube.com/watch?v=GLGpsMvp7Jo
https://doi.org/10.1109/INFCOM.1999.752152
https://doi.org/10.1109/INFCOM.1999.752152
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

	Abstract
	1 Introduction
	2 Motivation
	3 System Architecture
	3.1 Video Quality Prediction Network(VQPN)
	3.2 Video Quality Reinforcement Learning(VQRL)

	4 Evaluation
	4.1 Datasets and Metrics
	4.2 Implementation
	4.3 Experiments and Results

	5 Related Work
	5.1 Real-time Rate Control Methods
	5.2 Video Quality Metrics
	5.3 Deep Reinforcement Learning Approaches

	6 Conclusion
	References

