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ABSTRACT
The leading learning-based rate controlmethod, i.e., QARC, achieves
state-of-the-art performances but fails to interpret the fundamental
principles, and thus lacks the abilities to further improve itself effi-
ciently. In this paper, we propose EQARC (Explainable QARC) via
reconstructing QARC’s modules, aiming to demystify how QARC
works. In details, we first utilize a novel hybrid attention-based
CNN+GRU model to re-characterize the original quality prediction
network and reasonably replace the QARC’s 1D-CNN layers with
2D-CNN layers. Using trace-driven experiment, we demonstrate
the superiority of EQARC over existing state-of-the-art approaches.
Next, we collect several useful information from each interpretable
modules and learn the insight of EQARC. Following this step, we
further propose AQARC (Advanced QARC), which is the light-
weighted version of QARC. Experimental results show that AQARC
achieves the same performances as the QARC with an overhead
reduction of 90%. In short, through learning from deep learning,
we generalize a rate control method which can both reach high
performance and reduce computation cost.
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1 INTRODUCTION
In recent years, we have witnessed a rapid increase on the demand
of real-time video streaming. Due to the complicated environment
and stochastic property in various network environments, how to
transmit video stream with high quality of experience (QoE) has
become the fundamental challenge. Most rate control approaches
[2, 3, 5, 7, 12, 13] often pick future bitrate as high as possible with
the permission of network conditions. However, due to the inequal-
ity between the following video qualities and video bitrates, such
strategies may cause a large waste of bandwidth resources. Thus,
QARC [6] adopts deep reinforcement learning (DRL) method to
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tackle the problem: it trains the neural network and picks the fu-
ture video bitrate without any presumptions. In details (§2), QARC
consists of two neural network (NN) modules: 1) Video Quality
Prediction Network (VQPN) predicts the future video quality via
previous video frames; 2) Video Quality Reinforcement Learning
(VQRL) uses A2C [11] to train a model to pick the future bitrate
encoded w.r.t the network status observed and the video quality
for the future frames estimated by VQPN.

Nevertheless, QARC adopts high-performance neural network
as a black box, and seldom considers whether it is explainable or
not. Meanwhile, the ignorance of interpretation may seriously con-
strains its further improvements. In this paper, motivated by the in-
creasing development of explainable artificial intelligence(XAI) [15,
17], we propose EQARC(Explainable QARC), aiming to demystify-
ing the underlying reasons that why QARC works well, and then,
attempting to grope a way for improving the proposed algorithm.
Specifically, our work consists of several steps.

First, on the premise of maintaining the performance, we recon-
struct all the neural network modules in QARC (§3), which involves:
1) EVQPN (Explainable VQPN): we design a novel hybrid attention-
based CNN+GRU model to re-characterize VQPN (§3.1. Results
demonstrate that EVQPN improves the prediction quality by 8.5% -
36.76% compared with the baseline methods (§4.2.1). Besides, we
consider the best NN architecture for EVQPN. (§4.3) 2) EVQRL (Ex-
plainable VQRL): we reasonably replace the 1D-CNN layers with
2D-CNN ones in VQRL and use the global average pooling layer
to take the place of the original fully-connected layer (§3.2). Us-
ing trace-driven experiments we find that the proposed method
builds a visual heatmap representation that can explain the im-
plicit attention of VQRL for each input state (§5.2). Results also
demonstrate that EQARC generalizes well, which improves QARC
on average QoE by 3.6% (§4.3). Next, by observing the features
from EVQPN’s attention heatmap, we realize the main function
of VQPN can be effectively replaced by computing the average
value of the gray-scale image (§5.1). Furthermore, we show that
the Fast Fourier Transform (FFT) features play a vital part in the
VQRL’s input, especially, under the non-stationary network envi-
ronments (§5.2). Finally, based on the aforementioned insights, we
further implement AQARC, which combines EVQRL and EVQPN
into one single NNmodel to determine the rate control policy (§5.3).
Extensive results show that AQARC obtains the close performance
as previous approaches while reducing about 90% of the model size.

In general, our contributions are multi-folds.
▷ To the best of our knowledge, we are the first to investigate
the fundamental insights of the AI-based rate control method.
Motivated by the recent success of XAI, we propose EQARC
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for better understanding the key principles of QARC. Results
indicate that EAQRC betters recent schemes (§4.2.1, §4.3).
▷ Learning from deep learning is effective. Many helpful and useful
information can be found in all of the modules of QARC. Through
learning from VQPN, we observe that extracting features by com-
puting the average value of the gray-scale image w.r.t. each video
frame are able to reflect the essence. (§5.1) Meanwhile, through
learning from VQRL, we also find that the features extracted by
FFT play a vital role in determining the next bitrate (§5.2).
▷ We further propose AQARC, which achieves the similar per-
formance with QARC while reducing the overhead by about
90% (§5.3).

2 RELATEDWORK
Real-time rate control methods have been proposed and applied
about two decades. These schemes are mainly classified into three
types: loss-based bitrate approach, delay-based bitrate approach
and model-based bitrate approach. Loss-based approaches such
as TFRC [5] and rate adaptation protocol (RAP) [12], have been
widely used in TCP congestion control. Delay-based approaches,
aiming to adjust sending rate to control the transmission delay,
can be further divided into the end-to-end delay (RTT) approaches,
such as TCP Vegas [2]; one-way delay approaches, such as LEDBAT
(Over UDP) and TCP-LP [8, 13]; and delay gradient approaches [3].
Meanwhile, Model-based bitrate control method, such as Rebera [7]
and GCC [3], has been proposed to control the sending bitrate via
network status observed, including end-to-end latency gradient,
receiving rate estimated, past bitrate sent as well as loss ratio.

On the basis of conventional real-time video streaming system ar-
chitecture, Huang et. al. [6] propose QARC, a rate control approach
that is deployed on the sender side. QARC uses reinforcement learn-
ing to learn the correlation among the previous video frame, net-
work status, and the best future bitrate. In details, QARC composes
of two feasible and useful models, which involves: Video Quality
Prediction Network (VQPN), proposed by the end-to-end deep
learning method, predicts the future video quality metrics based on
historical video frames; Video Quality Reinforcement Learn-
ing (VQRL) uses A2C to train the neural network to select bitrates
for future video frames based on network status observations and
the future video quality metrics predicted by VQPN.

3 EXPLAINABLE QARC’S MECHANISM
Previous work [6] implemented a complete rate control approach
and performed well in various network conditions [6]. However,
due to the complex NN architecture and uninterpretability of deep
learning, we still can’t find out why QARC can finish such a com-
plicated task, which makes it difficult for us to further enhance the
performance of QARC. To this end, we reconstruct QARC based on
explainable artificial intelligence (XAI) and turned each of these
modules into an interpretable machine learning architecture. Mean-
while, a vital challenge for us is to preserve the performance of
QARC as much as possible during the reconstruction. In this section,
we start by introducing the EVQPN’s NN architecture. We then
describe the implementation details of EVQRL. Finally, we explain
the offline network simulator and how it helps QARC to train the
neural network models.
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Figure 1: VQPN Architecture Overview

3.1 Explainable-VQPN (EVQPN)
Based on the original QARC [6], we implement explainable video
quality prediction network(EVQPN) to help the RL model under-
stand the future frame’s perceptual video quality. Figure 1 describes
the EVQPN’s neural network architecture, which is composed of
three modules: one Convolutional Neural Network (CNN) module
extracts the spatial information; one Recurrent Neural Network
(RNN) module captures the temporarily features; and a third atten-
tion layer comes after the RNN module to demonstrate the implicit
attention of the temporal information. Details are shown as follows.

Input. EVQPN takes Fi = [fi−k , fi−k+1, · · · , fi ] as the state
inputs, where fi denotes the i-th sampled video frame.

Spatial information extraction. EVQPNuses several 2D-Conv
layers to extract frame features, which can obtain the spatial infor-
mation of each video frame in inputs Fi . Furthermore, we introduce
a global average pooling layer (GAP) after the last Conv layer in-
stead of the fully-connected layer aiming to encourage EVQPN
to identify all the discriminative parts of feature maps [17] and
to make EVQPN interpretable. Note that by removing the fully-
connected layers, the number of neurons and the overhead of the
network are both significantly reduced, while the performance is
slightly improved compared with the previous work [6].

Capturing temporal features. Upon extracting frame features
via CNN+GAP, VQPN leverages a double-layer recurrent module [4]
to further extract temporal characteristics of the video frames Fi
in past k sequences. For illustrating the weights of each recur-
rent unit clearly, we present a deterministic “soft” attention [1,
10] layer after the recurrent module. In this work, we use the
self-attention model [9]. The idea is to calculate the output Vt+1
based on a context vector ci with consideration of all the current
hidden states hi of the recurrent layer, and ci is formulated as:
ci =

∑k
j=1{Softmax(fatt (hj ))hi }. In which Softmax(fatt (hj )) is a

variable length alignment vector symbols the weight of each hid-
den state hi . The attention function fatt is defined as fatt (hi ) =
µTθ tanh(wθhi + bθ ), Where µθ ,wθ and bθ are all learnable param-
eters. In practice, we implement the attention function as a single
fully-connected layer with the tanh activation function.

Output: The output of VQPN is Vt+1, a vector indicating the
prediction of the video quality assessment in the next time slot t + 1
encoded in several bitrates.
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Figure 2: The Actor-Critic algorithm that VQRL uses to gen-
erate sending bitrate selection policies

Loss function:We use mean square error(MSE) as the loss func-
tion. Besides, we consider adding regularization to the loss function
to avoid over-fitting on the training set. To encourage the diversity
of the attention vectors and to overcome the aforementioned short-
comings [16], we add another penalization formulated by Frobenius
norm. Let V̂t denote the real vector of video quality score of the
video in time t, the loss function can be written as (Eq. 1):

Lt (V ; θ ) = 1
N

∑
|Vt − V̂t |2 + λ0 | |θ | |2 + λ1 | |ααT − 1 | |2F (1)

where λ0 and λ1 are the regularization coefficients.

3.2 Explainable Video Quality Reinforcement
Learning (EVQRL)

Inspired by the original QARC, we formulate real-time video stream-
ing problem with the A2C framework (See in Figure 2), named as
explainable video quality reinforcement learning (EVQRL). Detail-
ing our system components, which include:

State: We consider the metrics that can be obtained by both the
sender and receiver in a feedback message session. VQRL’s learning
agent pushes the input state of time-slot t st = {p,v, s, r ,d} into
the neural network, where p means the past sending video quality;
v is the future video quality predicted by VQPN; s is the video
sending rate of the past k sequences that is equal to the throughput
measurement from the sender; r represents the receiving bitrate of
past k sequences measured by the receiver; d is the delay gradient
measured between a sender and receiver of the recent k sequences.
Besides, we also add the additional features into input which de-
composed the receive rate sequence through FFT.

Action: The agent needs to take an action when receiving the
state, and the policy tells the agent which action should be selected
in the RL problem. In general, the action space is discrete, and the
output of the policy network is defined as a probability distribution:
f (st ,at ), denoting the probability of the selection action at under
the state st . In this paper, the action space contains the candidates
of sending bitrate in the next time-slot.

Reward: The reward is set to maximum the Quality of experi-
ence (QoE) perceived by the user. In this work, QoE is influenced
by video quality, latency, and smoothness (§4.1).

Network Architecture Representation: The output of the ac-
tor network is a 5-dimension vector and the final output of the critic
network is a linear value. In particular, they use the same network
architecture consisting of two 2D-Conv layers with 64 filters.

4 EVALUATION
In this section, we evaluate EQARC with several experiments. We
first show the datasets and metrics. Then we compare EVQPN with
previously proposed methods and discuss the best NN architecture
for EVQPN. Finally, we compare the average QoE of EVQRL with
the original scheme.

4.1 Implementation
▷ Testbed: Considering the main contribution of this paper is to
improve the NN architecture rather than performance, we experi-
ence the evaluation on the existing QARC’s testbed [6] with same
videos and network traces.
▷ Video dataset: We leverage QARC’s video quality dataset as the
video set. For each video in datasets, the VMAF metric is given
with the bitrate in range of {300kbps, 500kbps, 800kbps, 1100kbps,
1400kbps}, and the reference resolution is configured as 800 × 480,
which is the same size as the default resolution observed by the
receiver during the real-time live streaming.
▷ Network traces: We use several network traces to evaluate
EQARC, including packet-level network traces, chunk-level net-
work traces, and synthetic network traces.
▷ QoE metrics: We adopt QARC’s QoE metric (Eq. 2), which is
commonly used in recent work [6], to evaluate EQARC. Ideally,
how to evaluate QoE is complicated but not unique. In this paper,
we only focus on proposing a rate-control method rather than a
reliable QoE function.

QoE =
N∑
n=1

(Vn − αBn − βDn ) − γ
N−1∑
n=1

|Vn −Vn−1 | (2)

Where Vn means the video quality of time n, Bn is the video bi-
trate that the sender selects, and Dn represents the delay gradient
measured by the receiver. The last term is the smoothness of video
quality. Coefficients α, β and γ are the weight to describe their ag-
gressiveness. In this paper, followed by recent QARC[6] paper, we
set α = 0.2, β = 10.0, and γ = 1.0.

4.2 EVQPN Evaluation
4.2.1 EVQPN vs. Proposed Methods. We compare EVQPN to the

following previously proposed methods which collectively repre-
sent the conventional prediction method:
(1) Artificial neural networks (ANNs): leverages a single layer with

64 neurons to predict future video quality;
(2) Fully-connected neural networks (FC): uses 3 traditional fully-

connected layers with {128, 64, 64} hidden units;
(3) Recurrent Neural Network (RNN): employs a conventional single-

layer recurrent neural network with 128 hidden units;
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Table 1: Comparing performance (RMSE) of VQPN with dif-
ferent regression algorithms.

Method RMSE Improvement(%)

ANN 0.181 -
FC(Baseline) 0.068 -

RNN 0.056 17.65
GRU 0.060 11.76
SI,TI 0.064 5.88

VQPN [6] 0.047 30.88
EVQPN 0.043 36.76

Table 2: Comparing the performance (RMSE) and the over-
head of VQPNwith different channel / hidden units. Results
are collected under learning rate=1e-4.

Channel / Hidden Units RMSE Model Size(MB)

2 0.054 0.022
4 0.055 0.086
8 0.059 0.33
16 0.046 1.4
32 0.043 5.3
64 0.052 21.0
128 0.052 84.0

(4) Gated Recurrent Unit (GRU): uses an advanced double-layer
recurrent neural network with 128 hidden units.

(5) SI&TI : leverages specific input features including Spatial per-
ceptual Information (SI) and Temporal Information (TI)[14].

(6) VQPN [6]: Previously proposed VQPN architecture passes k =
25 previous frames as the input to the NN architecture.
The comparison of the Root Mean Square Error (RMSE) between

EVQPN against other regression algorithms is shown in Table 1.
Note that we compare the performance of EVQPN with previously
proposed work on the same test datasets. As expected, the results
demonstrate that EVQPN imporves the prediction quality by 36.76%
compared to the baseline and by 8.5% compared to VQPN.

4.2.2 EVQPN Deep Dive. Table 2 shows our results with differ-
ent settings of channel number / hidden units. Results are sum-
marized with RMSE metric. Empirically, channel number / hidden
units = 32 yields the best performance. Meanwhile, its overhead
and the model size are acceptable and guarantee the deploy ability
in the real-world scenarios.
▷ Generalization. To sum up, EVQPN passes totally k = 25 previ-
ous frames (t = 5s past time video and 5 frames for each second) as
input to the neural network architecture, and the size of frames is
defined as 64× 36 with 3 channels. The features of the input frames
are extracted as 32-dimension vectors via the spatial information
extraction module. The spatial information extraction module is
composed of 2 Conv layers, both of which consist of 32 filters with
size 3 and stride 1. There is no max pooling layer in the spatial in-
formation extraction module. Finally, these feature maps are passed
into a global average pooling layer. After extracting the spatial
information of each video frame, a recurrent network is proposed

Figure 3: Comparsion of EQARC and QARC [6].

to estimate future video quality. VQPN passes k = 25 feature maps
to a gated recurrent unit(GRU) layer with 32 hidden units, then the
states of that layer are passed to another GRU layer with the same
hidden units. A self-attention layer is performed after the GRU
layer. Finally, EVQPN outputs a 5-dimension vector for each video
frame, and each value in the vector represents the video quality
score w.r.t. video bitrate {300, 500, 800, 1100, 1400} kbps. In short,
the architecture of EVQPN is defined as Conv1a32 → Conv1b32 →
GAP → GRU 2a32 → GRU 2b32 → Attention332 → Fc4. We utilize
the Adam optimizer to optimize EVQPN with the learning rate α
= 10−4. We use TensorFlow to implement this architecture, and
leverage the TFLearn deep learning library’s TensorFlow API to
declare EVQPN.

4.3 EVQRL vs. VQRL
For evaluating the performance of EVQRL architecture, we com-
pare the previous proposed VQRL and the explainable VQRL on
the experimental settings described in §3.2 and §4.1 respectively.
Experimental results is shown in Figure 3, and we observe that
EQARC performs better than QARC with improvements in average
reward of 3.6%.

5 LEARNING FROM EQARC
In this section, we try to explore the insight of EQARC under the
guidance of the attention heatmaps of EVQPN and EVQRL respec-
tively. The section is mainly composed of three parts, with the first
two representing the learning process of each module in EQARC.
Then We finally propose an advanced QARC (AQARC) approach
based on the learned insights.

5.1 Learning From EVQPN
In this subsection, we first introduce the method of how to inspect
the attention heatmap. We then discover temporal information
insight through the attention heatmap and further find that extract-
ing the feature as the average value of a gray-scale can replace the
original CNN-based spatial information extraction model.

Methodology: Unlike the previous work (e.g. [17]), EVQPN
extracts its attention features with jointly consideration of both
spatial information and temporal information. Thus, the attention
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(a) A music video in static scenario. (b) A music video with variable scene. (c) A comic video clip. (d) A soccer game video clip.

Figure 4: The sample attention weight αt = Softmax(fatt (ht )) of several video clips.

(a) Be yourself. (b) Tsubasa wa
Iranai.

(c) Big Buck Bunny. (d) World Cup Live.

Figure 5: The visualization heatmap captured from different
video scenarios.

heatmap Ai ,k for each frame fi in VQPN’s input is computed as

Ai ,k = F k (fi ) · [αiwk ]
T . (3)

Here, let F k (fi ) represent the activation feature map of the last
Conv layer, andwk denotes the weight corresponding to class k for
output bitrates.

Visualization Setup: To better understand the reason why
EVQPN performs well, we apply our EVQPN model to predict video
quality on several video clips in different scenarios including a
live cast scenario, a sports game video clip and a music video shot.
Meanwhile, the attention feature map F (fi ) and the alignment
vector αi will be recorded during the test. Figure 5 summarizes the
results.

Results and Analyze: As expected, the temporal information
can be explained clearly through the results. We observe that the at-
tention weight α performs quite different in various video scenes. In
Figure 4(a), we find that when the scene is not frequently switched,
EVQPN stably refers to the spatial information of the past video
frames, and vice versa (See Figure 4(d)). Due to the same video scene
switching attribute, the remaining two video clips, i.e., Figure 4(b)
and Figure 4(c) illustrate almost similar results.

The raw video frame and its attention heatmap are illustrated in
Figure 5(a-d). However, we observe that there are some isomorphic
features among the spatial information of video frames. No matter
how complex the video frame is, the neural network still seems
like to output the heatmap as a дray − scale image rather than
highlights the specific discriminative regions. Figure 6 shows the
same conclusion clearly.

Table 3: Comparing performance (RMSE) of gray-scale ap-
proach with VQPN.

Video Clip Name EVQPN gray-scale + GRU

Be yourself 0.013 0.026
Big Buck Bunny 0.116 0.116
Tsubasa wa Iranai 0.042 0.040
World Cup Live 0.121 0.124

(a) Raw Video Frame. (b) Attention heatmap.

Figure 6: The rawvideo frames and its attentionheatmap are
processed in gray-scale image. The video frame is captured
from a soccer video clip namedWorld Cup Live.

.

Rethinking EVQPN’s architecture:Our key idea is to identify
the performance of the model using a group of gray-scale video
frames and a one-layer RNN. In detail, we use the average value
of the gray-scale image as the feature for each video frame, then
we perform a one-layer GRU with a self-attentional model. The
input and the output are similar to those of EVQPN. In Table 3, we
report the results of this approach with different video clips and
we also provide comparisons on RMSE between the gray-scale ap-
proach and EVQPN. We observe that the results of two approaches
are close, especially in the Tsubasa wa Iranai task, the gray-scale
approach performs better than EVQPN with the improvement of
4.76%. Nevertheless, there is still a wide distance in the static video
scenes.

5.2 Learning from EVQRL
Methodology: As is already described in 3.2, we use a network
architecture similar to class activation maps(CAM) [17] to solve
the bitrate selection task and to further understand its action. We,
therefore, formulate the attention heatmap of EVQRL as follows:
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(a) stationary network environments. (b) non-stationary network.

Figure 7: Attention heatmap of EVQRLwhich are performed
in both stationary and non-stationary network.

Ac (St ) =
∑
k w

c
kF

k (St ), where Ac (St ) is defined as the attention
heatmap for action c ; F k (St ) represents the activation feature map
of the last Conv layer;wc

k is the weight corresponding to action c
for unit k and k means the filter number.

Experiments and Visualization Results:We visualize the at-
tention heatmap of EVQRL under different network conditions.
Results are summarized in Figure 7. We notice that in stationary
network conditions, EVQRL focuses on almost all the network fea-
tures including receive data and queuing delay gradient. By contrast,
it neglects the video quality metric feature because of the feasible
network conditions. However, while in the non-stationary network
environments, EVQRL pays more attention to the FFT features and
the video quality metrics instead of the raw network status.

5.3 Advanced QARC
On the basis of the results of EVQPN and EVQRL, we move forward
to investigate how to improve or refine the proposed EQARC archi-
tecture. Inspired by the EVQPN’s insight, we refine the EVQRL’s net-
work architecture by replacing the prediction video quality features
with the average value of a gray-scale image and disable EVQPN
module. In detail, the state of VQRL has been changed to st =
{д, s, r ,d, f rr , f

i
r }, in which д represents the average value of gray-

scale images in time-slot t (See Eq. 4, where G = [0.30, 0.59, 0.11]),
and the rest of them are same as the state of previously proposed
EVQRL.

д =
1

W × H × N

N∑
k=0

W∑
x=0

H∑
y=0

GT fk (x , y) (4)

We then implement the AQARC approach referring to the same
action and reward as illustrated in §4.1. Next, we evaluate them on
the same test dataset. Results are summarized in Table 4. By means
of results, we find that the AQARC obtains the close performance
as the previous approaches by reducing about 90% of the model
size overhead, thus we can prove that the conclusion learning from
deep learning is effective and impressive.

6 CONCLUSION
Previous learning-based method, i.e., QARC lacks interpretability,
resulting in the the difficulties for future improvement. In this
paper, we attempt to use XAI to reconstruct QARC for finding
out the fundamental principles. Following this idea, we propose
EQARC, which not only outperforms recent work but also shows
its interpretablity. Moreover, based on the insights observed from

Table 4: Comparisons with different QARC approaches on
the same test set. We evaluate the average QoE and the over-
head for each approach receptively.

Scheme Average QoE Model Size (MB)

QARC [6] 5.55 ± 0.34 8.9
EQARC (§3.2) 5.65 ± 0.74 6.5
AQARC (§5.3) 5.70 ± 0.92 0.88

EQARC, we further propose AQARC, which significantly reduces
QARC’s overheadwhile preserving its original performance. Results
indicate that the proposed method is useful and effective.
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