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ABSTRACT
Video transmission services adopt adaptive algorithms to ensure
users’ demands. Existing techniques are often optimized and evalu-
ated by a function that linearly combines several weighted metrics.
Nevertheless, we observe that the given function fails to describe
the requirement accurately. Thus, such proposed methods might
eventually violate the original needs. To eliminate this concern, we
proposeZwei, a self-play reinforcement learning algorithm for video
transmission tasks. Zwei aims to update the policy by straightfor-
wardly utilizing the actual requirement. Technically, Zwei samples
a number of trajectories from the same starting point, and instantly
estimates the win rate w.r.t the competition outcome. Here the
competition result represents which trajectory is closer to the as-
signed requirement. Subsequently, Zwei optimizes the strategy by
maximizing the win rate. To build Zwei, we develop simulation
environments, design adequate neural network models, and invent
training methods for dealing with different requirements on vari-
ous video transmission scenarios. Trace-driven analysis over two
representative tasks demonstrates that Zwei optimizes itself ac-
cording to the assigned requirement faithfully, outperforming the
state-of-the-art methods under all considered scenarios.
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1 INTRODUCTION
Thanks to the dynamic growth of video encoding technologies and
basic Internet services [6], currently we are living with the great
help of video transmission services. In particular, the videos are
required to transmit with fulfilling users’ requirements, where the
requirement is often known as quality of experience (QoE) or qual-
ity of service (QoS). Unfortunately, as much as the fundamental
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issue has already been published about two decades [15], current
approaches, either heuristics or learning-based methods, fall short
of achieving this goal. On the one hand, heuristics often use ex-
isting domain knowledge [15] as the working principle. However,
such approaches sometimes require careful tuning and will backfire
under the circumstance that violated with presumptions, finally
resulting in the failure of achieving acceptable performance under
all considered scenarios. On the other hand, learning-based meth-
ods [14, 22] leverage deep reinforcement learning (DRL) to train a
neural network (NN) by interacting with the environments with-
out any presumptions, aiming to obtain higher reward. In recent
work, the reward function is often defined as a linear-based equa-
tion with the combination of manipulation variables. While in this
study, we empirically discover that i) an inaccurate reward function
may mislead the learning-based algorithm to generalize bad strate-
gies, since ii) the actual requirement can hardly be presented by
the linear-based reward function with fixed weights. Moreover, iii)
considering the diversity of real-world network environments, it’s
difficult to present an accurate reward function that can perfectly
fit any network conditions (§2.2). As a result, despite its abilities to
gain higher numerical reward score, learning-based schemes may
generalize a strategy that hardly meet the actual requirements.

Taking a look from another perspective, we observe that the
aforementioned problem can be naturally described as a determinis-
tic goal or requirement [9]. For instance, in the most cases, the goal
of the adaptive bitrate (ABR) streaming algorithm is to achieve lower
rebuffering time first, and next, reaching higher bitrate [10, 13]. In-
spired by this opportunity, we envision a self-play reinforcement
learning-based framework, known as Zwei, which can be viewed
as a solution for tackling the video transmission dilemma (§3). The
key idea of Zwei is to sample trajectories repeatedly by itself, and
distinguish the sequence that is closer to the assigned demand,
so as to learn the strategy for satisfying the demand iteratively.
Specifically, we apply Monte-Carlo (MC) search to estimate moving
decisions from the starting point. In the MC search process, several
trajectories are sampled from the starting state according to the
current policy. Then the expected long-term win rate is estimated
by averaging the competition results from each trajectory pairs,
where the result represents which one is closer to the actual demand
between the two trajectories. Having estimated the win rate, Zwei
adopts the proximate policy optimization (PPO) [18] to optimize
the NN via increasing the probabilities of the winning sample and
reducing the possibilities of the failure sample.

In the rest of the paper (§4), we attempt to evaluate the potential
of Zwei using trace-driven analyses of various representative video
transmission scenarios. To achieve this, we build several faithful
video transmission simulators which can accurately replicate the
environment via real-world network dataset. Specifically, we vali-
date Zwei on two different tasks (§2.1), including client-to-server,
and server-to-client service. Note that each of them has individ-
ual requirements and challenges. As expected, evaluation results
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demonstrate the superiority of Zwei against existing state-of-the-art
approaches on all tasks. In detail, we show that (i) Zwei outperforms
existing ABR algorithms on both HD videos and 4K videos, with the
improvements on Elo score [7] of 32.24% - 36.38%. (ii) In the crowd-
sourced live streaming (CLS) scheduling task, Zwei reduces the
overall costs on 22% and decreases over 6.5% on the overall stalling
ratio in comparison of state-of-the-art learning-based scheduling
method LTS [22].
Contributions: This paper makes four key contributions.
• We point out the shortcoming of learning-based schemes in video
transmission tasks and present the idea that update networks
without reward engineering (§2.2).
• Zwei is a novel framework that aims to employ the self-play
reinforcement learning method to make the idea practical (§3).
• We implement Zwei into two representative video transmission
scenarios, i.e. rate adaptation and crowd-sourced scheduling.
Results indicates that Zwei outperforms existing schemes on all
considered scenarios (§4).

2 BACKGROUND AND CHALLENGES
2.1 Video Transmission Services
In this work, the video transmission service mainly consists of:

Client-to-Server Service. In this scenario, users often adopts a
video player to watch the video on demand. First, video contents
are pre-encoded and pre-chunked as several bitrate ladders on the
server. Then the video player, placed on the client side, dynamically
picks the proper bitrate for the next chunk to varying network
conditions. Specifically, the bitrate decisions should achieve high
bitrate and low rebuffering on the entire session [5, 10]. We call it
adaptive bitrate streaming (ABR).

Server-to-Client Service. Considering that if we were the con-
tent provider and currently we had multiple content delivery net-
works (CDNs) with different costs and performance, how to sched-
ule the users’ requests to the proper CDN, aiming to provide live
streaming services withing less stalling ratio and lower cost? In
common, we call that crowd-sourced live streaming(CLS) [22].

Details of each video transmission scenario are demonstrated in
§4. We can see that the video transmission task is often required to
obtain better performance under various mutual metrics.

2.2 Challenges
Motivation. Recent video transmission algorithms mainly consist
of two types, i.e., heuristics and learning-based scheme. Heuris-
tic methods utilize an existing fixed model or domain knowledge
to construct the algorithm, while they inevitably fail to achieve
optimal performance in all considered network conditions due to
the inefficient parameter tuning (§5,[14]). Learning-based schemes
train a NN model towards the higher reward score from scratch,
where the reward function is often defined as a linear combination
of several weighted metrics [14, 22]. Nevertheless, considering the
characteristics of the video transmission tasks above, we argue that
the policy generated by the linear-based reward fails to always per-
form on the right track. We, therefore, set up two experiments in
the ABR scenario (4.2) to prove this conjecture.
Observation 1. The best learning-based ABR algorithm Pensieve [14]
is not always the best scheme on every network traces.

Figure 1: We show average bitrate and rebuffering time for
eachABRmethod. ABRs are performed over theHSDPAnet-
work traces.

Figure 2: The comparison of linear-based optimal and
requirement-based optimal strategy. Results are evaluated
onfixed (0.5mbps) and the real-world network trace [17].We
can see the difference between the actual requirement and
the optimal trajectory generated by the linear-based reward.

Recently, given a deterministic QoE metric with linearly combin-
ing of several underlying metrics, several attempts have been made
to propose the ABR algorithm via model-based [21] or model-free
reinforcement learning (RL) method [14]. However, such method
heavily relies on the accuracy of the given QoE metric. Especially,
how to set a proper QoE parameter for each network condition is
indeed a critical challenges for training a good ABR algorithm. In
order to verify whether QoE parameters have influenced the per-
formance of ABR algorithms, we set up an experiment to report
average bitrate and rebuffering time of several state-of-the-art ABR
baselines (§4.2.3) and Zwei. Despite the outstanding performances
that Pensieve achieves, the best learning-based ABR algorithm does
not always stand for the best scheme. On the contrary, Zwei always
outperforms existing approaches.
Observation 2. Recent linear-based weighted reward function can
hardly map the actual requirement for all the network traces.

To better understand the effectiveness of weighted-sum-based
reward functions, we compare the optimal strategy of linear-based
with requirement-based under two representative network traces,
in which linear-based optimal is the policy which obtains maximum
reward, and the requirement-based optimal stands for the closest
strategy in terms of the given requirement. Unsurprisingly, from
Figure 2 we observe that linear-based optimal policy performs
differently compared with the requirement-based optimal strategy.
The reason is that the given weighted parameters are not allowed
to be adjusted dynamically according to the current network status.
Generally, we believe that the policy learned by reward engineering
might fall into the unexpected conditions.
Summary. In general, we observe that nomatter how precisely and
carefully the parameter of the linear-based reward function tunes,
such tuned functions can hardly meet the requirement of any net-
work conditions. E.g., the parameter of stable and unstable network
conditions are not the same. To that end, traditional learning-based
scheme, which often optimizes the NN via the assigned functions,



Self-play Reinforcement Learning for Video Transmission NOSSDAV’20, June 10–11, 2020, Istanbul, Turkey

Sn0

an0

Zwei

Sn1

an1

Zwei

Snt

…

ant

Zwei

Terminal

Rollout trajectory Tn

…T0

…T1

…Tn-2

…Tn-1

…

Monte Carlo Search

Win
+1

Loss
-1

Win
+1

…

Battle 
Competition

…

< >

Win Rate
r

Start

…

Figure 3: Zwei System Overview. The framework is mainly
composed of four phases:Monte Carlo sampling, battle com-
petition, win rate estimation, and policy optimization.

will eventually fail to provide a reliable performance on any net-
work traces. We therefore, attempt to learn the strategies from the
original demands.

3 ZWEI DESIGN
In this section, we briefly introduce the details of Zwei, including
its key principle, training algorithms and implementation details.

3.1 Basic Idea
Asmentioned before, we attempt to generalize the strategy based on
actual requirements instead of linear-based reward functions. Con-
sidering the basic requirement seldom directly provides gradients
for optimization, we, therefore, employ the self-play method [19]
that enables the NN to explore better policies and suitable rewards
via self-learning. Zwei treats the learning task as a competition be-
tween distinct trajectories sampled by itself, where the competition
outcome is determined by a set of rules, symbolizing which one
is closer to the given requirement. Subsequently, we are able to
update the NN towards achieving a better outcome.

3.2 Training Methodology
Figure 3 presents the main phases in our framework. The pipeline
can be summarized as follows:

Phase1: Monte Carlo Sampling. First, we adopt MC sampling
method to sample N different trajectories Tn = {sn0 ,a

n
0 , s

n
1 ,a

n
1 ,

. . . ,ant },n ∈ N w.r.t the given policy π (s) under the same environ-
ments (at ∼ π (st )) and start point (the gray point in Figure 3). Next,
we record and analysis the underlying metric for the entire session.
Finally, we store all the sample Tn into D. Note that we can select
Monte Carlo Tree Search (MCTS) [19], which is widely used in
advanced research, to implement the process.

Phase2: Battle Competition. To better estimate how the cur-
rent policy performs, Zwei requires a module to label all trajectories
from D: given two different trajectories, Ti and Tj which are all col-
lected from the same environment settings (Ti ,T j ∈ D)), we attempt
to identify which trajectory is positive for NN updating, and which
trajectory is generated by the worse policy. Thus, we implement a
rule called Rule which can determine the better trajectory between

the given two candidates, in which better means which trajectory
is closer to the requirement. At the end of the session, the terminal
position st is scored w.r.t the rules of the requirement for computing
the game outcome o: −1 for a loss, 0 for a draw, and +1 for a win.
The equation is listed in Eq. 1.

o
j
i = Rule(Ti ,Tj ). (1)

s .t . o
j
i = {−1, 0, 1},Ti ,Tj ∈ D,Ti , Tj . (2)

Phase3: Win Rate Estimation. Next, having computed the
competition outcome oi for any two trajectories, we then attempt to
estimate the average win rate ri for each trajectoryTi in D, i.e., ri =
E[Rule(Ti , )] = limN→∞

1
N

∑N
u oui . Notice that the accuracy of the

win rate estimation heavily depends on the numberN of trajectories.
Since it’s impractical to sample infinite number of samples in the
real world, we further list the performance comparison of different
sample numbers in §4.2.

Phase4: Policy Optimization. In this part, given a batch of
collected samples and their win rate, our key idea is to update
the policy via elevating the probabilities of the winning sample
from the collected trajectories and diminishing the possibilities of
the failure sample from the worse trajectories. In other words, the
improved policy π at state st is required to pick the action at which
produced the best estimated win rate rt . We employ Proxy Policy
Optimization (PPO) [18], a state-of-the-art actor-critic method, as to
optimize the NN’s policy. PPO uses clip method to restrict the step
size of the policy iteration and update the NN by minimizing the
following clipped surrogate objective. We list the Zwei’s loss function
LZwei(θ ) in Eq. (6). The function consists of a policy loss and a
outcome loss. The policy are computed as Eq. 3, where pt (θ ) denote
the probability ratio between the policy πθ and the old policy πθold ,
i.e., πθ (at |st )

πθold (at |st )
; ϵ is the hyper-parameters which controls the clip

range. We set ϵ = 0.2 which consistent with the original paper [18].
Ât is the advantage function (Eq. 4), Vθp (s) is provided by another
value NN. Meanwhile, the value loss aims to minimize the mean
square error between rt and Vθp (s) (Eq. 5). Moreover, we also add
entropy H (st ;θ ) to encourage exploration. For more details, please
refer to our repository [8].

LPolicy = Êt

[
min

(
pt (θ )Ât , clip

(
pt (θ ), 1 − ϵ , 1 + ϵ

)
Ât

)]
. (3)

Ât = rt −Vθp (st ) (4)

LValue =
1
2 Êt

[
Vθp (st ) − rt

]2
. (5)

∇LZwei = ∇θL
Policy + ∇θpL

Value + ∇θ βH (st ; θ ). (6)

4 EVALUATION
In this section, we thoroughly evaluate the performance of Zwei
over two representative scenarios.

4.1 Zwei’s NN Implementation
We use TensorFlow [3] to construct Zwei. Zwei’s policy network
takes a n-dims vector with softmax active function as the output,
and the outcome network outputs a value with tanh function scaled
in (−1, 1). Considering the characteristics on video transmission
tasks, we construct different NN architectures for each task, but
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use the same set of hyper-parameters for training the NN: sample
number N = 16, learning rate α = 10−4. Notice that we discuss the
NN architecture and the effect of different sample number in §4.2.

4.2 ABR Scenarios
4.2.1 ABR’s Background. The ABR video streaming architecture

consists of a video player client with a constrained buffer length and
an HTTP-Server or Content Delivery Network (CDN). The video
player client decodes and renders video frames from the playback
buffer. Once the streaming service starts, the client fetches the
video chunk from the HTTP Server or CDN orderly by an ABR
algorithm. The algorithm determines next chunks’ video quality.
After finished to play the video, several metrics, such as total bitrate,
total re-buffering time and total bitrate change will be summarized
as a QoE metric to evaluate the performance.

4.2.2 NN Architecture. We now explain the details of the Zwei’s
neural network (NN), including its inputs, outputs, network archi-
tecture, and implementation.

Inputs. For each chunk k = 8, Zwei takes the state inputs Sk =
{Xk , τk ,Nk ,bk , ck , lk } as the input, in which Xk represents the
throughput measured for past t times, τk reflects the vector of
download time for past t chunks, Nk is the next video sizes for
each bitrate chunk, bk means current buffer occupancy, lk is the
normalized value of the last bitrate selected, ck is the scalar which
means the video chunk remaining.

Outputs. We attempt to use discrete action space to describe
the output. Note that the output is an n-dim vector indicating the
probability of the bitrate being selected under the current ABR
state Sk . In this work, we set n = 6, which is widely used in ABR
papers [9, 14].

NN Representation. Zwei’s NN representation is quite simple:
it leverages three fully-connected layers, which is sized 128, 64,
and 64 respectively, for describing the feature extraction layer. The
output of the NN’s policy network is a 6-dims vector, which repre-
sents the probabilities for each bitrate selected. The NN’s outcome
network outputs a value scaled in (-1, 1).

Requirements for ABR tasks. Algorithm 1 is an example of
Rule Rule which used in the ABR scenario, where ϵc is a small
number that can add noise for improving Zwei’s robustness. In this
work, we set ϵc as 10. Note that, such settings are trivial and you
can just set the value as a small value (e.g., 0.1) instead.

Algorithm 1 Rule for the ABR task.
Require: Trajectory Tu ,Tv ;
1: Compute average bitrate ru , rv , average rebuffering bu , bv from the

given trajectories Tu ,Tv . ▷ Requirements: i) low rebuffering time ii)
high bitrate.

2: Initialize Return s = {−1, −1};
3: if |bu − bv | < ϵc or |ru − rv | < ϵc then
4: Randomly set s0 or s1 as 1. ▷ Add noise to improve the robustness.
5: else if |bu − bv | < ϵc then
6: si ← 1, i = arдmax i∈{u ,v }r ;
7: else
8: si ← 1, i = arдmini∈{u ,v }b ;
9: end if
10: return s ;

QoE Representation. Recall that the goal of ABR algorithm
is to select bitrates for the next chunk k with high bitrate rk and
less rebuffering time tk [13], thus the optimization reward qk can
be normally written as qk = rk − αtk , here α is the coefficient
that adjust the importance of the underlying metrics. Note that
prior research often add additional smoothness metric |rk − rk−1 |
to control the bitrate change of the entire session, while in practice
the following metric is neglectable for the ABR algorithm [10, 13].
Hence, in this work we also set the smoothness to zero for better
understanding the fundamental performance of Zwei. Solving Zwei
with smoothness metric will be our future work.

4.2.3 Experimental Setup. We employ the standard ABR’s em-
ulation environment [14] to evaluate Zwei. We adopt various net-
work bandwidth databases, including HSDPA [17], FCC [16]. Train-
ing process lasts approximate 45000 steps, within 10 hours to
obtain a reliable result. In this experiment, we setup two ABR
scenarios, i.e., HD and 4K video scenario. In the HD video sce-
nario, we adopt EnvivioDash3, a video that commonly used in
recent work [14], to validate Zwei, where the video chunks are
encoded as {0.3, 0.75, 1.2, 1.8, 2.8, 4.3} mbps. In the 4K-video sce-
nario, we use the popular open-source movie Big Buck Bunny [2],
which is now even more a world standard for video standards.
Specifically, we pick 6 bitrates from Dash.js standard [1], i.e.,
{0.2, 0.6, 1.5, 4.0, 8.0, 12.0} mbps.

ABRBaselines. In this paper, we select several representational
ABR algorithms from various type of fundamental principles:
(1) Rate-based [11]: the basic baseline for ABR problems. It lever-

ages harmonic mean of past five throughput measured as future
bandwidth.

(2) BOLA [20]: the most popular buffer-based ABR scheme in prac-
tice. BOLA turns the ABR problem into a utility maximization
problem and solve it by using the Lyapunov function.

(3) RobustMPC [21]: a state-of-the-art heuristic method which
maximizes the objectives by jointly considered the buffer occu-
pancy and throughput predictions. We implement RobustMPC
by ourselves.

(4) Pensieve [14]: the state-of-the-art learning-based ABR scheme
which utilizes DRL to select bitrate for next video chunks.

(5) Tiyuntsong [9]: the first study of multi-objective optimization
ABR approach. Tiyuntsong uses actor-critic method to update
the NN via the competition with two agents under the same
network condition.
Evaluation Metrics The Elo rating [7] is a traditional method

for calculating the relative performance of players in zero-sum
games. It’s suitable to compare different schemes via win rate in-
formation only. Thus, we also use Elo score to compare different
ABR schemes, similar to that of AlphaGo [19] and Tiyuntsong [9].

4.2.4 HD Video. We study the performance of Zwei over the
HD video dataset and HSDPA network traces. Followed by recent
work [21], we set α = 4.3 as the basic QoE-HD metric.

Zwei vs. Existing schemes. In this experiment, we compare
Zwei with existing ABR schemes over the HSDPA dataset. Results
are computed as the Elo-score and reported in Figure 4(a). Specifi-
cally, we first select several previously proposed approaches and
validate the performance respectively under the same network and
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(a) Zwei vs. ABR schemes (b) Zwei vs. Tiyuntsong (c) ABR Scheme Details (d) CDF of ABR Algorithms
Figure 4: This group of figures show the comparison results of Zwei and other ABR approaches. Results are evaluated in the
typical ABR system with HD Videos (video resolution=1920 × 1080, maximum bitrate=4.3mbps).

(a) Zwei vs. ABR schemes (b) Zwei with Different Samples (c) ABR Algorithm Details (d) CDF of ABR Algorithms
Figure 5: This group of figures show the comparison results of Zwei and other ABR approaches. Results are evaluated in the
typical ABR system with 4K Videos (video resolution=3840 × 2160, maximum bitrate=12.0mbps).

video environment. Next, we use Rule to estimate their winning
rate. Finally, we compute the Elo rating for these approaches.

Through the experiments we can see that Zwei outperforms
recent ABR approaches. In particular, Zwei improves Elo-score on
36.38% compared with state-of-the-art learning-based method Pen-
sieve, and increases 31.11% in terms of state-of-the-art heuristic
method RobustMPC. Same conclusion are demonstrated as the CDF
of QoE in Figure 4(d). Besides, we also illustrate the comparison
results of different methods on average bitrate and average rebuffer-
ing in Figure 4(c). As shown, Zwei can not only achieve highest
bitrate but also obtain lowest rebuffering under all network traces.
We compare Zwei with previously proposed self-learning method
Tiyuntsong on the same experimental setting. Results are shown
as the Elo-curve in Figure 4(b). As expected, Zwei with any NN
architectures outperforms Tiyuntsong on average Elo-score of 35%.
The reason is that Tiyuntsong treat the learning process as a battle
with two separated NNs, as each agent have to use the sample only
collected by the agent itself. Thus, it lacks sample efficiency and
sometimes struggles into the sub-optimal solution.

Zwei with Different NNArchitectures. This experiment con-
siders Zwei with several NN architectures, where Zwei-1D is the
standard ABR NN architecture [14], Zwei-2D uses stacked Conv-
2D layers to extract features, and Zwei takes three fully-connected
layers sized {128, 64, 64}. Results are shown in Figure 4(b). Un-
surprisingly, when Zwei trains with some complicated NN archi-
tecture (i.e., Zwei-1D and Zwei-2D), it performs worse than the
fully connected NN scheme. This makes sense since ABR is a light-
weighted task which can be solved in a practical and uncomplicated
manner instead of a NN incorporating some deep yet wide layers.

4.2.5 4K Video. we evaluate Zwei with 4K videos on HDFS net-
work traces, and the video are encodedwith {0.2, 0.6, 1.5, 4.0, 8.0, 12.0}
mbps. In particular, we have also retrained Pensieve with the Big
Buck Bunny and QoE-4K.

QoE metrics for other approaches. Due to the difference be-
tween the maximum bitrate of 4K video (i.e., 12mbps) and HD
video (i.e., 4.3mbps), we refer QoE4K as the QoE function for other
ABRs (expect Zwei). Specifically, we set the penalty of rebuffering
parameter α to 20 for better avoiding the occurrence of rebuffering.

Zwei vs. Recent ABR Schemes. Figure 5(a) plots the learning
curves in terms of the comparison of Zwei and other ABR meth-
ods. We observe that Zwei has already achieved state-of-the-art
performance in almost 200 epochs, and finally, the performance
improvement of Zwei can achieve 32.24% against the second best al-
gorithm Pensieve and 58.58%-120.76% against others. What’s more,
as depicted in Figure 5(c), no matter average bitrate or total re-
buffering time, Zwei always stands for the best scheme among all
candidates. In particular, Zwei increases 10.46% on average bitrates
with reducing 56.52% on total rebuffering time. Meanwhile, we also
report the comparison of QoE performance of the proposed scheme
in Figure 5(d). As expected, Zwei outperforms existing ABR algo-
rithms without reward engineering, with the increasing on average
QoE of 11.59%.

Zwei with Different Samples N . Besides, we also investigate
the Elo-rating of Zwei with different sample N , where we set
N = {2, 4, 8, 16}. Figure 5(b) illustrates the comparison of each
method, we observe that Zwei can achieve sample efficiency with
the increasing of the sample number N .

4.3 CLS Scheduling
4.3.1 CLS Overview. The ClS system is composed of a source

server and several CDNs. Upon received viewers’ requests, the CLS
platformwill first aggregate all stream data to the source server, and
then deliver the video stream to viewers through CDN providers
according to a certain scheduling strategy.

4.3.2 Implementation. Our experiments are conducted on the
real-world CLS dataset provided by the authors [22], spanning 1
week (6 days for training and 1 day for test). At each time, we
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(a) Zwei vs. Existing Methods (b) Zwei Training Curve

Figure 6: Results of Zwei under the CLS environment.

select 3 candidates from total 4 different CDN providers, and we
fit a separate simulator for them. Followed by previous work [22],
we use a piecewise linear model to characterize this relationship
between workload and block ratio. Note that the following features
are extracted by the real CDN dataset. What’s more, we set the
CDN pricing model w.r.t various CDN providers in industry, such
as Amazon E2 and Tencent CDN. See [8] for details.

Algorithm 2 Rule for the CLS task.
Require: Trajectory Tu ,Tv ;
1: Compute average stalling ratio stallu , stallv , accumulative cost

cu , cv from the given trajectories Tu ,Tv . ▷ Requirements: i) low
stalling ratio ii) low costs.

2: Initialize Return s = {−1, −1};
3: if |stallu − stallv | < ϵ or |cu − cv | < ϵc then
4: Randomly set s0 or s1 as 1. ▷ Add noise to improve the robustness.
5: else if |stallu − stallv | < ϵc then
6: si ← 1, i = arдmini∈{u ,v }c ;
7: else
8: si ← 1, i = arдmini∈{u ,v }stall ;
9: end if
10: return s ;

Baselines. Like other scenarios, we also compare Zwei with the
following state-of-art scheduling baselines:
(1) Weighted round robin (WRR) [4]. The requests will be redi-

rected to different CDN providers w.r.t a constant ratio. We
adopt the algorithm with the best parameters.

(2) E2 [12]. Exploitation and Exploration (E2) algorithm utilizes
harmonic mean for estimating CDN providers’ performance,
and select with the highest upper confidence bound of reward.
We use E2 algorithm provided by the authors [12].

(3) LTS [22]. State-of-the-art CLS algorithm which uses deep re-
inforcement learning to train the NN towards lower stalling
ratio. However, it ignores the trade-off between the cost and
the performance. We evaluate LTS by Zhang et. al. [22].
NN Representation. We implement Zwei in CLS as suggested

by recentwork [22].More precisely speaking, for each CDNprovider
i , Zwei passes past 20 normalized workload and stalling ratio into
Conv-2D layers with filter=64, size=4, and stride=1. Then several
output layers are merged into a hidden layer that uses 64 units to
apply the softmax activation function. We model the action space as
a heuristic way: each CDN provider has 3 choices, i.e., incrementally
increases its configuration ratio by 1%, 5%, and 10%.

Requirements for CLS tasks. Algorithm 2 describes the Rule
of CLS. Note that the ϵc = 10 is also a small number that can add
noise to improve Zwei’s robustness.

Zwei vs. State-of-the-art Scheduling Methods We start to
study how well that Zwei achieves under the CLS scenario. As
shown in Figure 6(a), we find that Zwei stands for the best scheme
among the candidates. Specifically, Zwei reduces the overall costs
on 22% compared with state-of-the-art learning-based method LTS,
and decreases over 6.5% in terms of the overall stalling ratio. The
reason is that LTS takes the weight-sumed combination function as
the reward, while the function can hardly give a clearer guidance
for the optimized algorithm. Moreover, comparing the performance
of Zwei with the optimal strategy generated by the reward function,
we observe that both optimal policy and Zwei are in the Pareto
front. Zwei consumes less pricing costs than the optimal policy
since the requirement is to minimize the cost first.

Details. Besides, we also present the training process in Fig-
ure 6(b). As shown, Zwei converges in less than 600 epochs, which
needs about 3 hours. It’s worth noting that Zwei also experienced
two stages on the CLS task. The first stage ranges from 0 to 100
epochs, and we can see the goal of Zwei is to minimize the cost
without considering the number of stalling ratio. The rest of the
process we find that Zwei attempts to reduce the number of stalling
ratio. Meanwhile, the cost curve converges to a steady state.
5 RELATEDWORK
Heuristic Methods. Heuristic-based ABR methods often adopts
throughput prediction (E.g., FESTIVE [11]) or buffer occupancy
control (E.g., BOLA [20]) to handle the task. However, such ap-
proaches suffer from either inaccurate bandwidth estimation or
long-term bandwidth fluctuation problems. Then, MPC [21] picks
next chunks’ bitrate by jointly considering throughput and buffer
occupancy. Nevertheless, MPC is sensitive to its parameters since
the it relies on well-understanding different network conditions.

Through preliminary measurements, it is widely accepted that
the strategies are largely statically configured [4]. In recent years,
dynamic scheduling across different CSPs has received more at-
tention. Jiang et. al. [12] uses E2 method to replace traditional
model-based methods.

Learning-based Schemes.Recent years, several learning-based
attempts have been made to tackle video transmission problem. For
example, Mao et al. [14] develop an ABR algorithm that uses DRL
to select next chunks’ bitrate. Tiyuntsong optimizes itself towards a
rule or a specific reward via the competition with two agents under
the same network condition [9]. LTS [22] is a DRL-based scheduling
approach which outperforms previously proposed CLS approaches.
However, such methods fail to achieve actual requirements since
they are optimized via a linear-based reward function.
6 CONCLUSION
We propose Zwei, which utilize self-play RL to enhance itself based
on the actual requirement, where the requirement is always hard
to be described as a linear-based manner. We show that Zwei out-
performs recent work with the improvements of more than 22% on
two representative video transmission tasks. (32.24% on Elo score
over the ABR scenario, 22% on stalling ratio over the LTS).
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A APPENDIX
This supplementary material details the principle of Zwei. Due to
the length of the supplemental material, we list a content to facilitate
the selection of interested parts for review. Although these contents
have NOT appeared in the main text, we believe that they will help
the reviewer get a thorough understanding of Zwei.

A.1 Additional Experiments for ABR Tasks
We list the experimental details under validation set from Table 1
to Table 3, where the ABR algorithm includes Zwei, BOLA, Ro-
bustMPC, Pensieve and Rate-based. The validation set contains
several different network scenarios. E.g., bus-1 represents network
trace No.1 which collected from the bus.
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Table 1: Details of ABR Tasks

Trace Name BOLA Rate-based Pensieve RobustMPC Zwei
- Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf.

bus 1 2659.6 - 2188.3 - 2480.9 - 2839.4 5.1 2802.1 -
bus 10 1467.0 - 1389.4 4.6 1413.8 - 1427.7 0.1 1490.4 -
bus 11 1327.7 - 1195.7 - 1264.9 - 1336.2 0.6 1363.8 -
bus 12 769.1 4.9 721.3 - 771.3 5.2 769.1 4.0 793.6 -
bus 13 852.1 9.7 529.8 - 623.4 2.6 629.8 5.5 666.0 0.7
bus 14 1675.5 8.3 933.0 - 1586.2 4.6 1610.6 4.6 1638.3 -
bus 15 3919.1 - 3497.9 - 3598.9 - 4141.5 - 3888.3 -
bus 16 3950.0 - 3652.1 - 3857.4 - 4145.7 - 3897.9 -
bus 17 1943.6 - 1844.7 2.2 1777.7 - 2005.3 - 2022.3 -
bus 18 1623.4 - 1559.6 0.4 1596.8 - 1588.3 1.0 1643.6 -
bus 19 1472.3 - 1212.8 - 1461.7 - 1440.4 - 1517.0 -
bus 2 1820.2 - 1656.4 - 1737.2 - 1861.7 - 1919.1 -
bus 20 1726.6 - 1517.0 1.6 1703.2 - 1752.1 - 1795.7 -
bus 21 1669.1 - 1497.9 - 1526.6 - 1759.6 2.1 1730.9 -
bus 22 1743.6 - 1594.7 7.8 1568.1 - 1791.5 3.6 1806.4 3.3
bus 23 1176.6 2.3 985.1 11.7 1076.6 - 1195.7 4.3 1178.7 -
bus 3 1331.9 - 1258.5 - 1283.0 - 1348.9 0.9 1368.1 -
bus 4 2121.3 - 1710.6 - 2103.2 - 2160.6 1.2 2156.4 -
bus 5 950.0 1.9 863.8 14.0 922.3 - 964.9 - 966.0 -
bus 6 1568.1 - 1324.5 0.3 1520.2 - 1606.4 - 1680.9 -
bus 7 2669.1 - 2376.6 - 2460.6 - 2571.3 - 2668.1 -
bus 8 2230.9 - 2008.5 2.9 2093.6 - 2305.3 - 2290.4 -
bus 9 2192.6 - 2014.9 4.0 2079.8 - 2297.9 1.8 2283.0 -
car 1 1440.4 0.8 1413.8 10.1 1467.0 12.7 1447.9 4.0 1434.0 -
car 10 1300.0 - 1127.7 - 1218.1 - 1338.3 2.6 1350.0 -
car 11 920.2 1.7 673.4 1.0 925.5 - 889.4 - 969.1 -
car 12 1291.5 18.2 1283.0 6.4 1291.5 13.7 1308.5 24.9 1325.5 13.5
car 2 1029.8 - 903.2 - 996.8 - 1034.0 - 1060.6 -
car 3 1351.1 1.8 1293.6 - 1334.0 2.0 1309.6 0.8 1327.7 -
car 4 1433.0 1.6 1327.7 3.4 1314.9 - 1423.4 1.7 1476.6 -
car 5 927.7 2.1 836.2 0.1 878.7 - 895.7 - 959.6 -
car 6 1295.7 - 1133.0 - 1263.8 - 1286.2 - 1326.6 -
car 7 710.6 1.3 568.1 11.9 666.0 - 677.7 0.9 697.9 -
car 8 1688.3 - 1448.9 - 1676.6 - 1704.3 - 1748.9 -
car 9 1485.1 - 1366.0 - 1423.4 - 1459.6 - 1526.6 -
ferry 1 1454.3 0.3 1423.4 - 1441.5 - 1455.3 - 1492.6 -
ferry 10 1119.1 0.2 1021.3 0.2 1104.3 0.2 1104.3 0.2 1133.0 0.2
ferry 11 1038.3 1.2 847.9 - 978.7 - 1037.2 0.1 1067.0 -
ferry 12 1525.5 - 1324.5 6.4 1466.0 - 1555.3 - 1586.2 -
ferry 13 1421.3 0.5 1192.6 12.6 1320.2 - 1436.2 5.4 1471.3 1.8
ferry 14 2036.2 - 1850.0 0.3 2074.5 - 2098.9 - 2124.5 -
ferry 15 1551.1 - 1385.1 - 1535.1 - 1486.2 1.1 1573.4 -
ferry 16 2684.0 - 2406.4 - 2480.9 - 2734.0 - 2817.0 -
ferry 17 859.6 0.1 768.1 9.4 818.1 - 826.6 - 850.0 -
ferry 18 724.5 2.8 587.2 4.9 666.0 1.1 667.0 1.0 684.0 -
ferry 19 839.4 4.8 654.3 - 826.6 - 825.5 - 863.8 7.1
ferry 2 1012.8 3.3 951.1 10.6 990.4 - 1001.1 - 1024.5 -
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Table 2: Details of ABR Tasks

Trace Name BOLA Rate-based Pensieve RobustMPC Zwei
Trace Name Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf.
ferry 20 686.2 6.7 635.1 - 670.2 5.8 672.3 5.0 674.5 -
ferry 3 1211.7 - 1093.6 - 1170.2 - 1231.9 0.7 1252.1 -
ferry 4 562.8 4.2 472.3 1.9 543.6 - 558.5 4.7 563.8 -
ferry 5 1011.7 1.7 901.1 12.0 940.4 - 1018.1 2.2 1027.7 -
ferry 6 2014.9 - 1598.9 - 2039.4 - 2093.6 - 2119.1 -
ferry 7 1367.0 0.5 1231.9 1.4 1309.6 - 1346.8 0.6 1422.3 -
ferry 8 1078.7 3.8 1010.6 - 1076.6 1.7 1078.7 2.5 1105.3 -
ferry 9 964.9 3.8 787.2 5.1 868.1 3.7 898.9 1.9 1004.3 3.3
metro 1 1350.0 - 1141.5 - 1269.1 - 1371.3 - 1389.4 -
metro 10 896.8 - 625.5 3.7 837.2 - 895.7 - 935.1 -
metro 2 1364.9 - 1285.1 2.8 1316.0 - 1381.9 2.5 1409.6 -
metro 3 934.0 - 481.9 - 884.0 - 913.8 - 956.4 -
metro 4 1086.2 1.0 884.0 1.2 968.1 0.6 1030.9 - 1121.3 -
metro 5 1178.7 1.0 1041.5 3.8 1142.6 - 1171.3 - 1229.8 0.5
metro 6 577.7 0.9 386.2 6.6 558.5 - 548.9 - 573.4 -
metro 7 945.7 - 769.1 - 948.9 0.2 961.7 0.1 977.7 -
metro 8 740.4 2.5 443.6 6.4 738.3 - 724.5 - 762.8 -
metro 9 788.3 - 702.1 4.4 735.1 - 788.3 1.5 806.4 -
train 1 1028.7 4.2 863.8 2.3 996.8 - 1008.5 - 1024.5 -
train 10 1838.3 - 1627.7 - 1709.6 - 1894.7 - 1907.4 -
train 11 1256.4 0.4 1163.8 0.2 1171.3 - 1257.4 - 1286.2 -
train 12 1304.3 0.8 911.7 1.3 1114.9 - 1212.8 - 1380.9 -
train 13 1560.6 - 1236.2 - 1334.0 - 1564.9 - 1675.5 -
train 14 1330.9 - 1206.4 - 1259.6 - 1320.2 - 1356.4 -
train 15 1900.0 - 1423.4 - 1650.0 - 1952.1 - 1944.7 -
train 16 1661.7 - 1475.5 3.5 1484.0 - 1575.5 - 1736.2 -
train 17 1620.2 - 1394.7 4.1 1556.4 - 1637.2 - 1706.4 -
train 18 1978.7 - 1725.5 - 1803.2 - 2012.8 - 2091.5 -
train 19 1423.4 - 1230.9 2.5 1302.1 - 1452.1 - 1484.0 -
train 2 635.1 3.5 481.9 11.1 577.7 - 581.9 - 664.9 3.0
train 20 1331.9 - 1052.1 - 1343.6 - 1357.4 - 1373.4 -
train 21 1598.9 - 1421.3 - 1596.8 - 1626.6 - 1652.1 -
train 3 648.9 1.6 529.8 8.6 619.1 - 596.8 - 629.8 -
train 4 1084.0 3.3 868.1 - 1024.5 - 1059.6 0.3 1127.7 -
train 5 1241.5 1.5 946.8 0.4 1155.3 - 1151.1 - 1283.0 -
train 6 969.1 0.9 721.3 - 875.5 - 936.2 0.9 991.5 -
train 7 825.5 8.3 750.0 - 784.0 - 790.4 - 823.4 2.6
train 8 706.4 1.0 510.6 - 666.0 - 693.6 - 730.9 -
train 9 855.3 - 596.8 - 776.6 - 852.1 - 881.9 -
tram 1 635.1 - 472.3 1.6 625.5 - 635.1 - 656.4 -
tram 10 869.1 2.5 673.4 - 850.0 - 878.7 - 871.3 -
tram 11 587.2 4.3 472.3 1.3 558.5 - 548.9 - 580.9 -
tram 12 807.4 - 548.9 - 795.7 - 816.0 - 826.6 -
tram 13 788.3 - 596.8 0.9 739.4 - 787.2 - 831.9 -
tram 14 839.4 2.2 644.7 1.1 808.5 - 797.9 - 844.7 -
tram 15 453.2 6.9 357.4 5.3 414.9 1.8 424.5 - 437.2 -
tram 16 683.0 - 548.9 - 673.4 - 692.6 - 692.6 -
tram 17 654.3 - 424.5 - 625.5 - 635.1 - 663.8 -
tram 18 730.9 2.8 587.2 - 691.5 - 706.4 - 751.1 -
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Table 3: Details of ABR Tasks

Trace Name BOLA Rate-based Pensieve RobustMPC Zwei
Trace Name Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf. Avg. Bit. Rebuf.
tram 19 967.0 0.1 788.3 - 907.4 - 973.4 - 985.1 -
tram 2 577.7 3.3 434.0 - 548.9 - 548.9 - 559.6 -
tram 20 930.9 - 730.9 - 885.1 - 928.7 - 988.3 -
tram 21 692.6 0.5 558.5 - 677.7 - 696.8 - 711.7 -
tram 22 510.6 0.3 376.6 - 491.5 - 501.1 - 506.4 -
tram 23 778.7 - 529.8 - 738.3 - 778.7 - 808.5 -
tram 24 788.3 - 616.0 3.4 739.4 - 769.1 0.3 808.5 -
tram 25 907.4 - 711.7 - 813.8 - 888.3 - 950.0 -
tram 26 568.1 0.8 300.0 - 539.4 - 568.1 - 567.0 -
tram 27 692.6 - 491.5 - 673.4 - 692.6 - 698.9 -
tram 28 558.5 0.3 386.2 2.2 510.6 - 539.4 - 540.4 -
tram 29 510.6 3.4 338.3 - 481.9 - 501.1 - 495.7 -
tram 3 577.7 1.3 414.9 - 539.4 - 534.0 1.9 570.2 1.7
tram 30 692.6 - 319.1 - 644.7 - 687.2 - 719.1 -
tram 31 769.1 - 644.7 - 753.2 - 769.1 - 783.0 -
tram 32 788.3 - 558.5 1.7 733.0 - 750.0 - 788.3 -
tram 33 874.5 - 644.7 - 841.5 - 877.7 0.2 880.9 -
tram 34 926.6 - 778.7 1.6 917.0 - 930.9 - 959.6 -
tram 35 548.9 5.0 405.3 1.6 501.1 - 486.2 - 550.0 -
tram 36 850.0 0.3 539.4 - 819.1 - 816.0 - 874.5 -
tram 37 984.0 - 807.4 - 894.7 - 1003.2 - 1026.6 -
tram 38 644.7 9.6 481.9 4.5 591.5 - 625.5 4.9 646.8 2.3
tram 39 855.3 - 721.3 - 814.9 - 826.6 - 868.1 -
tram 4 462.8 5.2 300.0 - 414.9 - 414.9 - 428.7 -
tram 40 797.9 0.6 520.2 0.6 770.2 0.6 772.3 0.8 827.7 0.6
tram 41 769.1 2.8 663.8 - 734.0 - 750.0 0.5 785.1 -
tram 42 1069.1 9.0 692.6 - 961.7 - 1057.4 - 1076.6 -
tram 43 1079.8 - 960.6 0.2 1048.9 - 1084.0 - 1105.3 -
tram 44 869.1 - 759.6 - 801.1 - 874.5 0.7 893.6 -
tram 45 648.9 1.1 472.3 7.0 627.7 0.5 635.1 0.5 627.7 0.5
tram 46 683.0 4.2 414.9 - 606.4 - 662.8 0.1 679.8 -
tram 47 788.3 0.9 539.4 - 705.3 - 764.9 - 795.7 -
tram 48 616.0 0.3 395.7 - 558.5 - 605.3 0.2 619.1 -
tram 49 963.8 1.1 778.7 - 963.8 - 985.1 2.2 1007.4 -
tram 5 654.3 5.2 443.6 2.6 587.2 - 616.0 - 640.4 -
tram 50 863.8 6.8 797.9 - 851.1 - 845.7 - 864.9 -
tram 51 658.5 5.5 587.2 - 638.3 - 647.9 - 674.5 4.6
tram 52 920.2 3.4 788.3 1.7 905.3 - 903.2 - 927.7 -
tram 53 657.4 17.3 443.6 3.8 434.0 0.2 428.7 - 522.3 -
tram 54 1123.4 6.8 862.8 6.6 1059.6 - 1109.6 - 1106.4 -
tram 55 1176.6 0.4 1100.0 - 1141.5 - 1146.8 1.9 1177.7 -
tram 56 971.3 - 797.9 - 944.7 - 957.4 - 992.6 -
tram 6 740.4 - 587.2 - 683.0 - 744.7 - 784.0 -
tram 7 759.6 - 596.8 - 720.2 - 744.7 - 797.9 -
tram 8 501.1 3.5 414.9 - 472.3 - 462.8 0.2 483.0 -
tram 9 606.4 0.2 328.7 - 568.1 - 572.3 - 629.8 -
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