Deep Reinforced Bitrate Ladders for Adaptive Video Streaming

Tianchi Huang!, Rui-Xiao Zhang!, Lifeng Sun

1,2,3%

I Dept. of CS & Tech., 2BNRist, *Key Laboratory of Pervasive Computing, Tsinghua University.

ABSTRACT

In the typical transcoding pipeline for adaptive video streaming,
raw videos are pre-chunked and pre-encoded according to a set
of resolution-bitrate or resolution-quality pairs on the server-side,
where the pair is often named as bitrate ladder. Different from ex-
isting heuristics, we argue that a good bitrate ladder should be
optimized by considering video content features, network capacity,
and storage costs on the cloud. We propose DeepLadder, a per-chunk
optimization scheme which adopts state-of-the-art deep reinforce-
ment learning (DRL) method to optimize the bitrate ladder w.r.t
the above concerns. Technically, DeepLadder selects the proper
setting for each video resolution autoregressively. We use over
8,000 video chunks, measure over 1,000,000 perceptual video quali-
ties, collect real-world network traces for more than 50 hours, and
invent faithful virtual environments to help train DeepLadder ef-
ficiently. Across a series of comprehensive experiments on both
Constant Bitrate (CBR) and Variable Bitrate (VBR)-encoded videos,
we demonstrate significant improvements in average video qual-
ity, bandwidth utilization, and storage overhead in comparison to
prior work as well as the ability to be deployed in the real-world
transcoding framework.

CCS CONCEPTS

« Information systems — Multimedia streaming;

KEYWORDS
Adaptive Video Streaming, Bitrate Ladder.

ACM Reference Format:

Tianchi Huang, Rui-Xiao Zhang, Lifeng Sun. 2021. Deep Reinforced Bitrate
Ladders for Adaptive Video Streaming. In Workshop on Network and Oper-
ating System Support for Digital Audio and Video (NOSSDAV ’21)) (NOSSDAV
"21), September 28-October 1, 2021, Istanbul, Turkey. ACM, New York, NY,
USA, Article 4, 7 pages. https://doi.org/10.1145/3458306.3458873

1 INTRODUCTION

The Global Internet Phenomena Report COVID-19 Spotlight [36]
reveals that almost 80% of internet traffic consists of video, gam-
ing, and social content. Among them, the video streaming service
covers 57.64%, and at least 51.43% of video streams are delivered
by adaptive video streaming technologies [7]. In such technologies,
on the server-side, video streams are pre-chunked and pre-encoded
at various bitrates or quality levels. On the client-side, users often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8435-3/21/09...$15.00
https://doi.org/10.1145/3458306.3458873

apply adaptive bitrate (ABR) algorithms to pick the proper bitrates
for chunks to ensure the quality of experience (QoE). We often call
the server-side encoding settings as bitrate ladder (§2.1).

The majority of existing bitrate ladder optimization schemes
often use fixed encoding ladders (known as one-size-fits-all [10]), or
consider either video contents [8] or network conditions [32] and
solve the problem mathematically (§2.1). In this paper, we show
that the bitrate ladder should be optimized by taking several factors
from different perspectives into account, including video contents,
network capacity, and storage costs on the cloud. However, the
methods based on mathematical models fail to tackle the problem
due to the high complexity and hardly identifies the underlying
correlation between these factors (§2.2).

We present DeepLadder, a per-chunk neural transcoding system.
Technically, we use a neural network (NN) to determine the proper
setting for each resolution autoregressively. Moreover, considering
that the sequential decisions require different exploration depth and
practice intensity during the training [22], we leverage a novel deep
reinforcement learning (DRL) algorithm to balance a variety of goals
such as maximizing perceptual video quality, improving bandwidth
utilization, and reducing the storage overhead. In particular, we
integrate the storage weight, representing the importance of the
storage cost, into the input. The weight is randomly adjusted for
each episode. Therefore, such many-goal technique [43] enables
DeepLadder to handle the multi-objective reward function with
dynamic storage weights (§3).

We design a faithful offline simulator to allow DeepLadder tp
converge within an acceptable time (§4.1). Besides, considering
that DeepLadder requires a large corpus of videos to converge, we
collect a video dataset with two encoding types (i.e., constant bi-
trate (CBR)-encoded and variable bitrate (VBR)-encoded videos).
Using trace-driven experiments, we show that: i) Compared with
existing methods under various networks and videos, DeepLadder-
CBR improves the average quality by 8.49%-14.25%, enhances the
bandwidth utilization by 3.66%-11.68%, and reduces the storage
cost by 39.77%-54.84%. ii) Results on DeepLadder-VBR also illus-
trate significant improvements in the average quality (3.8%-7.7%)
and reduction in terms of the storage costs (21.26%-44.88%). iii)
DeepLadder is practical and can be deployed into the transcoding
framework. Testing results on both CPU and GPU devices indicate
that DeepLadder achieves the aforementioned performance with
only 3.4% on extra costs compared with the original system while
saving almost 70% of overall overhead in comparison to state-of-
the-art heuristics (§4).

In general, we summarize the contributions as follows:

i) We investigate three critical features for constructing a good
bitrate ladder. Further, we propose DeepLadder, the first DRL-based
approach to solve the problem.

ii) We train DeepLadder over various video dataset and network
traces. The bitrate ladders selected by DeepLadder demonstrate the
superiority of the algorithm compared with prior approaches.

https://doi.org/10.1145/3458306.3458873
https://doi.org/10.1145/3458306.3458873

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey

Huang et al.

K 80 g
/ b “~zq =2
5 %0 / % 60 % 60 \ v
= = = »n
s 40 ! > 40 ! > 401 = 720p-750kbps g
204 1 —-=- Video-2 20 —-==- Video-2 20/ ==+ 720p-1850kbps el
/ —-- Video-3 —-- Video-3 — - 720p-4300kbps >
o3 2000 4000 6000 °% 2000 4000 6000 % 10 20 30 40 0 0 20 30
Bitrate (240p) Bitrate (720p) Video Chunk Video Chunk
(a) R-D curves: 240p (b) R-D curves: 720p (c) Quality: CBR video. (d) Size: VBR video.
Figure 1: Visualizing the correlations of video bitrates, perceptual video qualities, and the video contents.
Table 1: The typical bitrate ladder adaptive bitrate streaming system. Besides, Reznik et al. [30] dis-
cuss the optimization problem with different decoding on devices,
seh Bitrate Ladder Storage Quality video player playback features, as well as network capabilities.
cheme (Kbps) (MB) ([28]) Meanwhile, some related work have already addressed the stor-
[45,100, 150, 200, 250, 300, 400, age constraints [35, 41]. Technically, all of the schemes consider
FDCHAS [6] | 500, 600, 700, 900, 1200, 1500, 2000, ~ 13.5725 46.91 the problem as the non-linear optimization problem and solve it
2100, 2400, 2900, 3300, 3600, 4000] mathematically.
YouTube (2] [90, 500, 700, 1250, 3750, 6000] D43 A3 Learning-based. Recently several schemes have also been pro-
P.enSle‘fe (24] 300, 750, 1200, 1850, 2850, 4300] 5625 53.04 posed to optimize the bitrate ladder via deep learning method. Kat-
BitMovin [46] [400, 800, 1200, 2400, 4300] 4.8 53.45

2 BACKGROUND AND MOTIVATION

In this section, we start by illustrating the background of the bitrate
ladder. Then we list several challenges in terms of constructing
a bitrate ladder. Finally, we describe how to use customized deep
reinforcement learning methods to tackle the problem.

2.1 Related Work
Most Internet video sharing platforms adopt adaptive bitrate (ABR)

technologies, e.g., DASH [13] and HTTP Adaptive Streaming (HLS) [1],

to ensure quality of experience (QoE). In such technologies, raw
videos are required to be pre-processed before being played on the
client. Specifically, for each raw video, first, the video is chunked
as a segment duration (e.g., 4 seconds). Then the segment chunks
are encoded as different bitrates or quality levels. Finally, all the
segments are stored in the assigned storage server. Each video has
been previously pre-chunked and pre-encoded into different set-
tings, i.e., resolution-bitrate for CBR-coded and resolution-quality for
VBR-coded videos [26]. The Video transcoding problem has already
been published for about two decades [5]. With the population of
adaptive video streaming technologies [9], recent years have seen
a number of studies on optimizing transcoding strategies. Such
schemes are mainly organized into two types: mathematical-based
and learning-based.

Mathematical-based. Modern bitrate ladder optimization method
is started by Netflix [10]. In detail, De Cook et al. analyze all the
possible resolution-bitrate pairs independently, and pick the best
pair that is close to the convex hull as possible. Meanwhile, Chen
et al. [8] propose a per-chunk encoding scheme that leverages
player feedback behavior for optimizing the chunked transcoding
pipeline. Moreover, Reznik et al. [32] first take the current network
status into consideration and model the problem as a non-linear
constrained optimization problem. Other studies [31] use two sub-
sets of codecs, i.e., H.264 and H.265, to construct the multi-codec

senou et al. [18] propose a content-gnostic approach which adopts
machine learning technologies to estimate the bitrate ranges for dif-
ferent resolutions. Xing et al. [49] employ NN to predict the optimal
rate-control target for User-Generated Content videos. However,
such methods are often myopic, one-shot, and only consider instant
rewards.

2.2 Motivation

To better investigate how to generate an outstanding bitrate ladder,
we set up several representative experiments from different aspects,
including contents, networks, and costs.

> Video Content Video content usually has a great impact on en-
coded video quality. To prove it, we collect three videos (No.1 - No.3)
with different contents and report the Rate-distortion curve (R-
D curve) [50] with the video resolution of 240p and 720p. Here
we apply Video Multi-Method Assessment Fusion (VMAF) [28],
the state-of-the-art video quality assessment, ranging from 0 to
100, as the video quality metric. We find the video content is quite
diverse, since i) In the resolution of 240p (Figure 1(a)), the video
resolution is too small, causing premature saturation for video No.3;
ii) In 720p (Figure 1(b)), the video qualities can converge into an
acceptable range. Moreover, Figure 1(c) shows the performance
of a sequence of video chunks of the same video (games, H.264,
CBR-encoded by FFmpeg [12] with the constant bitrates). We find
that the video quality will noticeably change due to dynamic video
contents. Figure 1(d) gives an example of video sequence encoded
by VBR (music video, H.265, VBR-encoded with -crf=25), where
the dashed lines mark the video sizes of four tracks. Results demon-
strate the same conclusion that is notated in the CBR-encoded
experiment. Thus, we argue that the typical one-fits-all strategy can
hardly always achieve satisfactory performance for various video
contents.

> Network Traffic Distributions. We further investigate the re-
lationship between the average bandwidth distribution and the de-
fault bitrate ladder setting proposed by Mao et al. [24]. We consider

Deep Reinforced Bitrate Ladders for Adaptive Video Streaming

240p 360p 480p 720p 1080p

Average Throughput (mbps)

Figure 2: Cumulative distribution function (CDF) of session
throughput on different network traces.

a set of the network trace datasets: Pensieve training dataset (P-
Train) [23], HSDPA [33], Oboe [42], and HDFS [38] network traces.
The CDF of session throughput curve in Figure 2 shows that the
current network environments seldom cover all the range of bitrate
candidates. For example, the average throughput of the trace in
the P-Train dataset never reaches 4.3mbps, i.e., the bitrate setting
of 1080p videos, while the average bandwidth of the trace in the
HDFS dataset seldom works lower than 1.85mbps (the bitrate set-
ting of 480p videos). Thus, motivated by the previous bitrate ladder
scheme [31], we take the current network traffic conditions into
consideration.
> Storage Costs Table 1 lists the typical bitrate ladder settings.
Specifically, we compute the average storage consumed for each raw
video chunk and use RobustMPC [52] to evaluate the performance
of each bitrate ladders via VMAF [28] tools over the HSDPA [33]
networks. Surprisingly, we observe that the bitrate ladder with too
many tracks fails to obtain higher video qualities. What’s more,
BitMovin’s bitrate ladder settings achieve optimal performance
using 35.3% of the storage cost compared with FDCHAS[6]. So how
to construct the bitrate ladder with lower storage costs?
Summary. In general, we find that constructing a good bitrate
ladder should consider video content features, current network traf-
fic capacities, and especially, the overall storage cost on demand. It’s
quite challenging for conventional heuristics to effectively combine
such metrics from various perspectives. In contrast, we treat the
bitrate ladder problem as a sequential decision-making process (§3)
that fits well with the objectives of reinforcement learning (§4).
Moreover, we leverage deep reinforcement learning (DRL) since its
capabilities to generalize from raw fresh data without relying on
handcraft engineering (§3.1).

3 DEEPLADDER SYSTEM MECHANISM

Big Picture. As illustrated in Figure 3, DeepLadder’s basic system
work-flow is mainly composed of the transcoding stage and the
online stage. In the transcoding stage, we leverage a NN-based
decision model for constructing the proper bitrate ladders and use
the assigned settings to transcode the video for each chunk. In the
online stage, the encoded chunks are deployed on the server and
wait for fetching. The NN continually obtains the video quality and
storage at the transcoding stage, as well as periodically receives
the network status feedback at the online stage.

Why Sequential Learning? Recall that previous work solves
the problem within one-step (§2.1). However, it’s impractical to
directly apply the conventional DRL framework to solve the bitrate
construction process since the action space will be extremely huge
if the NN samples all the bitrates. Given the number of the bitrate

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey

Transcoding
Stage

Decison

)
i
]
Raw Videos Video Chunks | NN-based i
1
1

Network & ABR Status Feedback

Figure 3: An Overview of DeepLadder’s System Workflow.

candidates m and the count of the bitrate ladder n, for s states, each
iteration needs O(m"s?) steps, or slightly faster if there is sparsity
in the transition function [39]. To eliminate the huge complexity,
considering the lifetime of a bitrate decision as a Markov Decision
Process (MDP), we pick the proper bitrate or quality level for each
resolution in an autoregressive manner. Such sequential learning
settings enable the algorithm to effectively reduce the complexity
of each iteration to O(mns?).

3.1 NN Overview

DeepLadder’s NN architecture is illustrated in Figure 4. We now
explain the states, actions, reward definition.
State. We mainly categorize the DeepLadder’s input into four parts,
that is video features, network capacity, past actions, and storage
weights. In other words, for each video chunk t, we have the state-
space Sy = {F; , Nt , Py, w}.

> Video Frames F;. Recent research demonstrates that the per-
ceived video quality heavily depends on the underlying attribute
of video content. Thus, the DeepLadder’s learning agent takes the
video frame F;(t = 1,2,...,T) as the input, where the frame is
the I-frame (intra picture) [20] of the given video. As suggested by
recent work [4, 24], the videos are chunked as 4 seconds, i.e., T=4.
We down-sample each of the raw video frames to size 224x224X3,
feed it into the pre-trained ResNet50 [16] model, and get output
feature maps from the last convolution layer. A global average pool-
ing (GAP) layer is applied to merge the information from all feature
maps. We call the process as video extraction (§4.4).

> Network Capacity N;. Recall that the current global network
traffic distribution is a non-trivial feature for optimizing the ladder.
Furthermore, How to accurately represent the network state is
quite challenging since all the bandwidth traces can be viewed as a
continuous sequence instead of a finite discrete vector. Hence, we
apply the bandwidth trace histograms with average throughput for
representing current network capacity. Specifically, we categorized
the average bandwidth within a specified range of values n (called
bins) and static the frequency of the data values. We set n=20 to
balance the performance and the cost.

> Past Actions P;. The agent takes past actions’ sequence P; =
{ap,...,ar—1} into NN, where a; reflects the normalized action for
video resolution i. Please note that the action representation is
different in the CBR and VBR coding (§4).

> Storage Weights w. We consider the diverse settings of storage
weight for each content provider. For instance, some providers
prefer video quality and consider the storage cost as a non-trivial
metric, or vice versa. To overcome the fact that the NN will be
retrained if the required storage weight changes, we take the storage
weight w into the state. We randomly sample weights w € (0, 1]

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey

[

Policy

IFrame ResNet50 GAP 1,,"iog

[OITTTT]
h (_,W{Bandwidth }-»‘Zl \|:|_>|:|
Network Bandwidthy L] 1|:|D-CNN Value

Status Frequency Frequency 1x2, 128 FC

| 128

Past Actions
me |
Storage Weight 128 Merge

Figure 4: DeepLadder’s NN Architecture Overview.

for each episode, enabling the NN to learn the correlation between
the storage weight and the feedback reward [43].
Action. Considering that DeepLadder is able to support the di-
versity of coding methods, we will introduce the action space for
DeepLadder-CBR and DeepLadder-VBR in §4.
Reward. We list the instant reward function r; in Eq. 1. Given
a network condition C, where C is often represented as a list of
saturated network traces [47], we aim to maximize the bandwidth
utilization and average video quality, and in turn, minimizing the
storage cost. Detailing the equation, that includes:

> Bandwidth Utilization U: represents the actual network uti-
lization of the selected chunk size in the current network state (Eq. 2),
where Br(a;) denotes the bitrate for the picked chunks, Cy=g4;
means the network bandwidth under all actions a;. Here p(a;|C)
means the probability that the chunk a; being selected over the
given network condition C. Note that the result of p(a;|C) is highly
correlated with the ABR algorithms. Considering the diversity of
ABR algorithms in the online stage, we refer the default ABR algo-
rithm as the oracle policy. The reason is that end-to-end optimiza-
tion is impractical in practice since bitrate construction and ABR
algorithms will be optimized by different methods and people (or
groups), while the main goal for that two algorithms is to achieve
ABR oracle as much as possible.

> Average video quality Q: computed by the expectation of
the video quality Q(a;) being selected by the action sequence
{ao, ..., a;} for chunk {0, ..., t}.

> Storage Cost Sz: means the average chunk size for the action
sequence {a0, . .., a;}. Recall that the storage weight w is meant to
balance the positive and negative metrics.

re = Zt:p(atlc)U(at,c) +Zt:p(at|C)Q(at)—wZ sz(at)/t. (1)

— ——

Storage cost

Bandwidth utilization.

B Br(at)/Ca=a,
Ul(ar,C) = { 1—Br(ai)/ca:at

Video quality

Sz(az) < Ca:at ©)
Sz(a;) > Ca=q,

3.2 NN Architecture.

Now we introduce DeepLadder’s NN architecture, which is com-
posed of video extraction process and the inference process. In the
video extraction process, for the content-aware video frame, we
employ the state-of-the-art pre-trained image classification model
to extract spatial information from the video frames. At first, we
feed the I-frames of the video into the pre-trained ResNet50 [16]

Huang et al.

model and output feature maps from its last convolution layer. We
then apply a global average pooling (GAP) layer to merge the infor-
mation from each feature map. Next, the features are down-sampled
by an 1D-CNN layer with kernel size=4, filter number=128, and
stride=1. So we take the video frames sized [4, 224, 224, 3] as the
input. The video extraction network outputs the vector with the
size of [4, 128]. In the inference process, for the network state
representation, we adopt a 1D-CNN-layer with kernel size=2 and
filter number=128 to over-sample the features to a 128-dim vector.
What’s more, we use two 128-dim fully connected layers to extract
the features from past actions and storage weights respectively.
Then all the vectors are integrated into a concatenate layer. Finally,
the outputs of the DeepLadder are the policy network and the value
network, in which the activation function of the policy network is
softmax and we set linear function for value network. In this work,
we use Dual-clip PPO [51] to jointly optimize the policy for both
long-term reward and entropy.

4 EVALUATION

In this paper, we attempt to evaluate DeepLadder on both CBR-
encoded and VBR-encoded videos. The main challenge faced by
many experiments is the CBR and VBR are two different coding
methods [26]: CBR controls the transcoding process by adjusting
the bitrate, as VBR controls the video quality. The design principle
of the action space of two schemes is described in §4.2 and §4.3.

4.1 Methodology

The Video Dataset. Deep learning requires a large amount of train-
ing data due to the huge number of parameters to be tuned. Never-
theless, revisiting previously proposed public video datasets [21, 27,
53], we observe that the existing datasets lack either the diversity
of video contents or the video coding types, which are unable to be
used for research purpose directly. We make two contributions:

> For the CBR (constant bitrate) coding, we collect a video dataset
that contains 87 H.264 videos, 9 tracks/levels, 4714 video clips.
Moreover, we measure the VMAF [28] metric for each video chunk
with different levels and resolutions, yielding 254,529 samples.

> We make a VBR (variable bitrate)-encoded video dataset, which
includes 65 H.265 videos, 20 tracks/levels, totaling 3509 video clips.
Meanwhile, we apply SSIM [45] and PSNR [17] metric to measure
the video quality for each video chunk and get 842,160 samples.

The Network Dataset. To better simulate the diversity of real-
world network conditions, we collect over 3,000 network traces
with a duration of almost 50 hours, from public datasets for training
and testing. The dataset contains traces from HSDPA [33], FCC [29],
Oboe [42], and HDFS [38] datasets. In general, for videos, we ran-
domly divide the dataset into two parts, 80% traces for training and
20% for testing. For network traces, we train the NN on the training
set and test the performance on other network datasets.

Implementation. We adopt TensorFlow [3] to implement the
DeepLadder’s training workflow and apply TFlearn [40] to im-
plement the NN architecture. Moreover, we use the pre-trained
ResNet-50 model in Keras [15] to extract features of video contents.
We set the learning rate of the policy network as 107> and set that
of the value network as 107%, and leverage the Adam optimizer [19]
to optimize the NN. Consistent with standard YouTube settings [2],
the algorithm will terminate after generating 6 bitrates. At each

Deep Reinforced Bitrate Ladders for Adaptive Video Streaming

Table 2: Comparing the execution time and accuracy of the
DeepLadder’s simulator with transcoding in the real-world.

Simulator (ms) In situ (ms)

Acc.
Execution Trans Measuring Total
Time Time Quality Time
CBR 0.048 2010 5234 7243 98.83%
VBR 0.0028 2186 5186 7368 100%

—— Deepladder

RMPC-Set WM Deepladder 0.81 ——. pen-Set
RMPC-Set

----- Nf-Greedy

EE8 Nf-Greedy EEE Pen-Set

Better

Average Value

20 40 60 80
Average Quality

(b) HSDPA, by network traces.

Video Quality Bandwidth
(VMAF)

Stor
Utilization (%) Overhead(50KB)

(a) HSDPA, by videos

1.0

EE Nf-Greedy HEE Pen-Set —— Deepladder
RMPC-Set WM Deepladder 0.81 —~. pen-Set

RMPC-Set

0.6

& Nf-Greedy

o4

Average Value

-
0.2 Better

0.0

20 40 60 80

Storage
Overhead(50k8) Average Quality

dwidth
Utilization (%)

(c) FCC, by videos

(d) FCC, by network traces.

Figure 5: Comparing DeepLadder-CBR with existing bitrate
optimization approaches over the HSDPA and FCC traces.
Results are collected based on different videos and network
traces respectively. We set w = 0.

step, the learner picks the proper profile for the video in the resolu-
tion of {144p, 240p, 360p, 480p, 720p, 1080p} respectively. We train
DeepLadder’s NN decision core on the laptop with Intel i7 3.7GHZ,
12-core CPUs, 64G RAM, and a Nvidia-1080TI GPU. We use multi-
agent training technologies that enable: 16 forward propagation
learning agents, placed on the CPU, for sampling; 1 central agent,
placed on the GPU side, for training. Training takes approximately
12-16 hours. Recall that the cost is incurred in the offline stage, as
we deploy the learned policy on the online stage straightforwardly
for zero-shot inference [44].

Transcoding Simulator for Fast Training. Considering that
the learning agent may repeatedly take the same bitrate ladder con-
figuration, we pre-transcode every decision of each video and notes
the features extracted by ResNet-50 [16], the video qualities (i.e.,
PSNR, SSIM, VMAF), as well as video sizes after transcoding. In par-
ticular, considering the continuous action space in the CBR-encoded
video environments, we estimate the video quality and the video
size via the piece-wise linear-regression method. Table 2 shows the
proposed simulator performs at least 15,000% acceleration with an
accuracy of 98.83%.

Baselines. We choose several representational bitrate ladder
optimization algorithms from both academia and industry (§2.1).
For the CBR-encoded video scenario, we set:

> Netflix [10] (Nf-Greedy): offline picking the results of all the
bitrate-resolutions pairs for each resolution, and select the best pair
which is close to the convex hull as possible. We add the algorithm
into the baseline since it’s scalable, simple yet effective.

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey

—— Deepladder ~o
58 ww RMPC-Set

— = DeepLadder
N RMPC-Set.

E \
S
54 : AN
~
52 Treaaa

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Storage Weight Storage Weight

Figure 6: DeepLadder with different storage weight w.

Video Quality
(VMAF)
o
o
Bandwidth
Utilization (%)
S

~

o
d

/

> Pensieve-Settings [24] (Pen-Set): a popular fixed encoding
ladder profile, which encodes the videos at the bitrate of {300, 750,
1200, 1850, 2850, 4300}kbps.

> MPC-Settings [52] (RMPC-Set): another fixed encoding lad-
der settings with {300, 700, 1000, 1500, 2000, 3000}kbps.

Furthermore, we select the following baselines for the VBR-
encoded video scenario:

> Fixed-25 [26]: recent studies find that using the Constant Rate
Factor (CRF) value of 25 can provide good viewing quality [11].

> X265 [48]: the default CRF value is fixed as 28 in libx265 [34].

4.2 DeepLadder-CBR

In this section, we analyze the performance of DeepLadder with con-
stant bitrate (CBR)-encoded videos. Specifically, we use VMAF [28],
a state-of-the-art objective full-reference perceptual video quality
metric, to measure the video quality.

Action Space Design. Considering the high complexity of con-
tinuous action selection of CBR-encoded videos, we downscale the
continuous action space to the discrete one. In detail, we set the the
action a; = Nj, where N; represents the i-th throughput categorized
by the bandwidth histogram method (§3.1). Meanwhile, we apply
masked-softmax to mask previous selected actions. In conclusion,
we have 20 actions in total, consistent with the number of network
status n of the NN’s state.

DeepLadder-CBR vs. Baselines. Figure 5 shows the compari-
son between DeepLadder with recent proposed schemes (§4.1). First,
as shown in Figure 5(a) and Figure 5(c), we test the performance
of each scheme by the video under the HSDPA and FCC network
environment and report the average video quality, bandwidth uti-
lization, and storage overhead. Here error bars span + one standard
deviation (std) from the average. We can see that DeepLadder out-
performs previously proposed methods, with the improvements on
i) average video quality of 8.49% - 12.94% on the HSDPA dataset and
8.78%-14.25% on the FCC dataset; ii) 3.66%-11.68% in terms of the
bandwidth utilization on HSDPA. Meanwhile, DeepLadder reduces
the storage overhead by 39.77%-54.84% compared with the baselines.
In particular, despite the outstanding results that the fixed encoding
ladder achieves, both RMPC-Set and Pen-Set consume too much
storage overhead compared with DeepLadder. What’s more, we
treat the network trace in the dataset as an independent network
condition, aiming to evaluate the performance of the proposed
schemes against others in a fine-grained perspective. Figure 5(b) and
Figure 5(d) demonstrate that DeepLadder is well behaved on the
average video quality, which is always better than other baselines.

Comparison of Different Storage Weights w. Recall that we
take the storage weight as a goal into the DeepLadder’s NN in-
put, so there’s no need to be retrained when adjusting the storage
weight as needed. Figure 6 illustrates the curve of average quality

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey Huang et al.
B2R X265 EEE Deepladder,w=0 BZ Fixed5 EEEE Deepladder,w=0 150 PGy
100 Fixed5 B Deepladder,w=1 100 X265 B Deepladder,w=1.0 5

)] ° Ny
2 2 5145
> > 2
:,j, 50 % 2 Il —— 30% of Data
5 5 140 === 100% of Data
2 2 — - Fixed5
" Ny " - 135
Video Quality Bandwidth Storage Video Quality dwidth Storage 0 1 2 3 4 5 6
(VQAIlog) Utilization (%) Overhead(50KB) (VQAlog) Utilization (%) Overhead(50KB) Epoch led

Figure 7: Comparing DeepLadder-VBR with existing bitrate optimization ap- Figure 8: Training DeepLadder-VBR

proaches on the Oboe and HDFS network traces.

and bandwidth utilization of DeepLadder with different w. Results
are collected under the HSDPA dataset. Meanwhile, we plot the
dashed lines to mark the performance of RMPC-Set. We find that
the storage weight w can effectively control the balance among the
given metrics: DeepLadder will preserve the average video quality
instead of bandwidth utilization if the storage weight is rather high.
Another interesting observation is that we set w € [0,1) during
the training, while DeepLadder even works well in w € [1, 2). Such
observation demystifies that DeepLadder has already learned the
correlation between the weight and the performance, and general-
ized a strategy that has a good extrapolation performance.

4.3 DeepLadder-VBR

We set up a new VBR-encoding testbed with the VBR-encoded video
dataset, the VBR transcoding simulator, as well as network traces.
To better understand DeepLadder’s generalization ability, we apply
another classical video quality assessment VQA!©9 [37, 54], which
is the non-linear relationship between SSIM and mean opinion
score (MOS), to measure the quality metric. Here we follow the
recent work [54] to set the parameters (Eq. 3), in which SSIM;
means the average SSIM metric for the video chunk ¢. Moreover,
we utilize Oboe [4] and HDFS [38] network traces to validate the
performance of the proposed methods.

65.4

log _ _
Vo4, T =755 1 4 €37-37X(SSIM;-0.93)

+24.4SSIM; 3)

Action Space Design. We set the action size of DeepLadder-
VBR as 20, symbolizing that the videos will be encoded by crf=20-39.
Such settings have covered the best quality for most videos [26].

DeepLadder-VBR vs. Existing Methods. Figure 7 illustrates
the results for the Oboe [4] and HDFS [38] network conditions.
As expected, DeepLadder-VBR (w = 0)’s bandwidth utilization is
within 8.37%-15.03% compared with fixed encoding ladder schemes.
Moreover, DeepLadder-VBR (w = 1) effectively preserves the aver-
age video quality VOA,, (even improves the quality by 3.8%-7.77%
compared with fixed encoding ladder approaches), and reduces
storage cost by 29.8% on Oboe, 21.26%-44.88% on HDFS.

Training DeepLadder-VBR with More Data. The traditional
bitrate ladder optimization scheme uses less video to get better
results. So what about DeepLadder? To answer this question, we
record the performance of the proposed scheme on the HSDPA
network condition every 500 epochs. Results are reported with
the training curve of two DeepLadder-VBRs in Figure 8, where
one of them learns the policy by only 30% videos. Unsurprisingly,
DeepLadder (100%) outperforms DeepLadder (30%) on the average
reward of 3.0%. Such observation indicates that deep learning indeed

with 30% and 100% of videos.

Table 3: The total timespan comparison of DeepLadder and
baselines in the real-world deployment.

Process(ms) Video Inference Trans. Extra
Extraction Timespan Time | Cost (%)

DeepLadder@CPU 439 3 12060 3.67

Netflix@CPU = = 39937 332.0

DeepLadder@GPU 94 12 3407 3.11

Netflix@GPU = = 11849 347.8

requires a large number of data (i.e. our video dataset §4.1) for
generalizing a good strategy.

4.4 Practical Implementation

It’s notable that the increased overhead will neglect the increased
overall performance if it is significant. To this end, we deploy the
proposed scheme as a service into a simple transcoding framework
and list the time consumption for each process in Table 3, tested on
an Intel Core i7 CPU2.2GHz and an Nvidia 1080Ti GPU. In particular,
in the GPU test, we use the FFmpeg’s integration of NVIDIA Video
Codec SDK that enables high-performance hardware-accelerated
video pipelines [25]. Results indicate that DeepLadder (in gray) only
consumes 3.11%-3.67% on the extra cost compared with the original
system. More surprisingly, we find that DeepLadder’s inference
time (without video feature extraction) on GPU is 4X higher than
that on CPU. It makes sense since the NN adopts a lightweight
design so that it can achieve higher efficiency on the CPU device.
Moreover, comparing with state-of-the-art heuristic Netflix [10],
DeepLadder only requires 29.64% (GPU) and 31.3% (CPU) of overall
overhead as well as obtains better performance (§4.2). In general,
we believe that DeepLadder is quite suitable and practical to be an
add-on for real-world implementation, e.g., Morph [14].

5 CONCLUSION

DeepLadder is a novel learning-based bitrate ladder construction
system. Unlike previous schemes, DeepLadder’s NN takes current
raw video contents, network traffic capacities, and the storage over-
head into the input. We adopt the DRL method to train DeepLadder
w.r.t a large corpus of internet network traces and collected videos.
Experimental results on both CBR and VBR-encoded videos indi-
cate the superiority of DeepLadder over existing approaches, which
sheds some light on optimizing the transcoding pipeline in a smart
and practical manner.

Acknowledgments. We thank our shepherd Christian Tim-
merer, and the anonymous NOSSDAV reviewers for their construc-
tive feedback. This work was supported by NSFC under Grant
61936011, 61521002, Beijing Key Lab of Networked Multimedia, and
National Key R&D Program of China (No. 2018YFB1003703).

Deep Reinforced Bitrate Ladders for Adaptive Video Streaming

REFERENCES

[1] 2019. HTTP Live Streaming. https://developer.apple.com/streaming/. (2019).
[2] 2019. Youtube. (2019). https://www.youtube.com

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.

265-283.

[4] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, et al. 2018. Oboe: auto-tuning
video ABR algorithms to network conditions. In SIGCOMM 2018. ACM, 44-58.

[5] Pedro A Amado Assuncao and I Ghanbari. 1997. Optimal transcoding of com-
pressed video. In Proceedings of International Conference on Image Processing,

Vol. 1. IEEE, 739-742.

[6] Abdelhak Bentaleb, Ali C Begen, Saad Harous, and Roger Zimmermann. 2018.
A distributed approach for bitrate selection in HTTP adaptive streaming. In

Proceedings of the 26th ACM international conference on Multimedia. 573-581.

[7] Abdelhak Bentaleb, Bayan Taani, Ali C Begen, Christian Timmerer, and Roger
Zimmermann. 2018. A Survey on Bitrate Adaptation Schemes for Streaming

Media over HTTP. IEEE Communications Surveys & Tutorials (2018).

[8] Chao Chen, Yao-Chung Lin, Steve Benting, and Anil Kokaram. 2018. Optimized
transcoding for large scale adaptive streaming using playback statistics. In 2018
25th IEEE International Conference on Image Processing (ICIP). IEEE, 3269-3273.

Cisco Visual Networking Index: Forecast and Method-

https://www.cisco.com/c/dam/en/us/

Cisco. 2017.
ology, 2016-2021. (2017).
solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.pdf

=

[10] Jan De Cock, Zhi Li, Megha Manohara, and Anne Aaron. 2016. Complexity-based
consistent-quality encoding in the cloud. In 2016 IEEE International Conference

on Image Processing (ICIP). IEEE, 1484-1488.

[11] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A
large-scale video codec comparison of x264, x265 and libvpx for practical VOD
applications. In Applications of Digital Image Processing XXXIX, Vol. 9971. Inter-

national Society for Optics and Photonics, 997116.
[12] FFmpeg. 2020. FFmpeg. https://ffmpeg.org. (2020).

[13] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella. 2017. D-DASH: A Deep Q-
Learning Framework for DASH Video Streaming. IEEE Transactions on Cognitive
Communications and Networking 3, 4 (Dec 2017), 703-718. https://doi.org/10.

1109/TCCN.2017.2755007

[14] Guanyu Gao and Yonggang Wen. 2016. Morph: A fast and scalable cloud transcod-
ing system. In Proceedings of the 24th ACM international conference on Multimedia.

1160-1163.
[15

Ltd.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770-778.

[17] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In

2010 20th International Conference on Pattern Recognition. IEEE, 2366—-2369.

[18] Angeliki V Katsenou, Joel Sole, and David R Bull. 2019. Content-gnostic Bi-
trate Ladder Prediction for Adaptive Video Streaming. In 2019 Picture Coding

Symposium (PCS). IEEE, 1-5.
[19

mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Jani Lainema, Frank Bossen, Woo-Jin Han, Junghye Min, and Kemal Ugur. 2012.
Intra coding of the HEVC standard. IEEE transactions on circuits and systems for

video technology 22, 12 (2012), 1792-1801.

[21] Jean Le Feuvre, Jean-Marc Thiesse, Matthieu Parmentier, Mickaél Raulet, and
Christophe Daguet. 2014. Ultra high definition HEVC DASH data set. In Proceed-

ings of the 5th ACM Multimedia Systems Conference. 7-12.

[22] Ehud Lehrer and Rann Smorodinsky. 2000. Relative entropy in sequential decision

problems. Journal of Mathematical Economics 33, 4 (2000), 425-439.

[23] Hongzi Mao. 2017. Pensieve-traces. (Jul 2017). https://www.dropbox.com/sh/

ss0zs1lcdcklu3u/AAB-8WC3cHD4PTtYTOE4M19Ja?dl=0

[24] Hongzi Mao, Ravi Netravali, Mohammad Alizadeh, et al. 2017. Neural adaptive

video streaming with pensieve. In SSIGCOMM 2017. ACM, 197-210.

[25] NVIDIA. 2020. GPU-accelerated video processing integrated into the most popu-
lar open-source multimedia tools. (2020). https://developer.nvidia.com/ffmpeg
[26] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata Sen, Bing
Wang, and Chaoqun Yue. 2018. ABR streaming of VBR-encoded videos: char-
acterization, challenges, and solutions. In Proceedings of the 14th International

Conference on emerging Networking EXperiments and Technologies. 366-378.

[27] Jason J Quinlan and Cormac J Sreenan. 2018. Multi-profile ultra high defini-
tion (UHD) AVC and HEVC 4K DASH datasets. In Proceedings of the 9th ACM

Multimedia Systems Conference. 375-380.

[28] Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical video
quality metric. In Broadband Multimedia Systems and Broadcasting (BMSB), 2017

Antonio Gulli and Sujit Pal. 2017. Deep learning with Keras. Packt Publishing

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

[29

[30

(31

[32

[33

[34

[35

[36

[37

&
&,

@
20,

iy
L)

[51

(52

[53

NOSSDAV ’21, September 28-October 1, 2021, Istanbul, Turkey

IEEE International Symposium on. IEEE, 1-2.
Fixed Broadband Report. 2016. Raw Data Measuring Broadband Amer-

ica 2016. https://www.fcc.gov/reports-research/reports/measuring-broadband-
america/raw-data-measuring-broadband-america-2016. (2016). [Online; accessed
19-July-2016].

Yuriy Reznik, Xiangbo Li, Karl Lillevold, Robert Peck, Thom Shutt, and Peter
Howard. 2020. Optimizing Mass-Scale Multi-Screen Video Delivery. SMPTE
Motion Imaging Journal 129, 3 (2020), 26-38.

Yuriy A Reznik, Xiangbo Li, Karl O Lillevold, Abhijith Jagannath, and Justin Greer.
2019. Optimal Multi-Codec Adaptive Bitrate Streaming. In 2019 IEEE International
Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 348-353.

Yuriy A Reznik, Karl O Lillevold, Abhijith Jagannath, Justin Greer, and Jon Corley.
2018. Optimal design of encoding profiles for abr streaming. In Proceedings of
the 23rd Packet Video Workshop. 43-47.

Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen. 2013. Com-
mute path bandwidth traces from 3G networks: analysis and applications. In
Proceedings of the 4th ACM Multimedia Systems Conference. ACM, 114-118.
Werner Robitza. 2017. CRF Guide. (2017). https://slhck.info/video/2017/02/24/
crf-guide.html

Silvia Rossi, Cagri Ozcinar, Aljosa Smolic, and Laura Toni. 2020. Do Users
Behave Similarly in VR? Investigation of the User Influence on the System Design.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 16, 2 (2020), 1-26.

SandDrive. 2020. COVID-19 Global Internet Phenomena Report. (2020). https:
//www.sandvine.com/phenomena

Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik. 2006. A statistical
evaluation of recent full reference image quality assessment algorithms. IEEE
Transactions on image processing 15, 11 (2006), 3440-3451.

Kevin Spiteri, Ramesh Sitaraman, Daniel Sparacio, et al. 2018. From theory to
practice: improving bitrate adaptation in the DASH reference player. In MMSys
2018. ACM, 123-137.

Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

Yuan Tang. 2016. TF. Learn: TensorFlow’s high-level module for distributed
machine learning. arXiv preprint arXiv:1612.04251 (2016).

Laura Toni, Ramon Aparicio-Pardo, Karine Pires, Gwendal Simon, Alberto Blanc,
and Pascal Frossard. 2015. Optimal selection of adaptive streaming represen-
tations. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 11, 2s (2015), 1-26.

Usc-Nsl. 2018. USC-NSL/Oboe. (Oct 2018). https://github.com/USC-NSL/Oboe
Vivek Veeriah, Junhyuk Oh, and Satinder Singh. 2018. Many-goals reinforcement
learning. arXiv preprint arXiv:1806.09605 (2018).

Wei Wang, Vincent W Zheng, Han Yu, and Chunyan Miao. 2019. A survey of
zero-shot learning: Settings, methods, and applications. ACM Transactions on
Intelligent Systems and Technology (TIST) 10, 2 (2019), 1-37.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600-612.

Daniel Weinberger. 2015. Video Bitrates for Streaming. (2015). https://bitmovin.
com/video-bitrate-streaming- hls-dash/

Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
forecasts achieve high throughput and low delay over cellular networks. (2013),
459-471.

x265.0rg. 2015. The x265 website. https://x265.org/. (2015).

Huaifei Xing, Zhichao Zhou, Jialiang Wang, Huifeng Shen, Dongliang He, and
Fu Li. 2019. Predicting Rate Control Target Through A Learning Based Content
Adaptive Model. In 2019 Picture Coding Symposium (PCS). IEEE, 1-5.

Yanling Xu, Yueqiang Lin, and Chenfeng Yu. 2020. Rate-Distortion Cost Estima-
tion Model Based on Cauchy Distributions for HEVC Encoder. In 2020 IEEE 4th
Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Vol. 1. IEEE, 436-440.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng
Yu, Shaojie Yang, Xipeng Wu, Qingwei Guo, et al. 2019. Mastering Complex
Control in MOBA Games with Deep Reinforcement Learning. arXiv preprint
arXiv:1912.09729 (2019).

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In SIG-
COMM 2015. ACM, 325-338.

Anatoliy Zabrovskiy, Christian Feldmann, and Christian Timmerer. 2018. Multi-
codec DASH dataset. In Proceedings of the 9th ACM Multimedia Systems Conference.
438-443.

Hui Zhang, Xiuhua Jiang, and Xiaohua Lei. 2015. A method for evaluating
QoE of live streaming services. international Journal of computer and electrical
engineering 7, 5 (2015), 296.

https://developer.apple.com/streaming/
https://www.youtube.com
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://ffmpeg.org
https://doi.org/10.1109/TCCN.2017.2755007
https://doi.org/10.1109/TCCN.2017.2755007
https://www.dropbox.com/sh/ss0zs1lc4cklu3u/AAB-8WC3cHD4PTtYT0E4M19Ja?dl=0
https://www.dropbox.com/sh/ss0zs1lc4cklu3u/AAB-8WC3cHD4PTtYT0E4M19Ja?dl=0
https://developer.nvidia.com/ffmpeg
https://slhck.info/video/2017/02/24/crf-guide.html
https://slhck.info/video/2017/02/24/crf-guide.html
https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena
https://github.com/USC-NSL/Oboe
https://bitmovin.com/video-bitrate-streaming-hls-dash/
https://bitmovin.com/video-bitrate-streaming-hls-dash/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Motivation

	3 DeepLadder System Mechanism
	3.1 NN Overview
	3.2 NN Architecture.

	4 Evaluation
	4.1 Methodology
	4.2 DeepLadder-CBR
	4.3 DeepLadder-VBR
	4.4 Practical Implementation

	5 Conclusion
	References

