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Abstract—Video transmission services adopt adaptive algo-
rithms to ensure users’ demands. Existing techniques are often
optimized and evaluated by a function that linearly combines
several weighted metrics. Nevertheless, we observe that the
given function often fails to describe the requirement accurately,
resulting in the violation of generating the required methods.

We propose Zwei, a self-play reinforcement learning frame-
work that updates the policy by straightforwardly utilizing the
actual requirement. Technically, Zwei effectively rolls out the
trajectories from the same initial state, and instantly estimates
the win rate w.r.t the competition outcome, where the outcome
represents which trajectory is closer to the assigned requirement.
We evaluate Zwei with different requirements on various video
transmission tasks, including adaptive bitrate streaming, crowd-
sourced live streaming scheduling, and real-time communication.
Results indicate that Zwei optimizes itself according to the
assigned requirement faithfully, outperforming the state-of-the-
art methods under all considered scenarios. Moreover, we further
propose Zwei+, which enables Zwei to learn the policies in the
vanilla no-regret reinforcement learning scenario. We validate
Zwei+ in the adaptive bitrate streaming task and show the
superiority of the proposed method over existing approaches.

Index Terms—Video transmission, Self-play Reinforcement
Learning.

I. INTRODUCTION

THANKS to the dynamic growth of video encoding tech-
nologies and essential Internet services [1], currently,

humans are living with the generous help of video transmission
services. Users often watch exciting videos and live stream-
ing from different video content providers (e.g., YouTube
and Kuaishou) or chat with each other via real-time video
communication rather than a conventional phone call. In such
scenarios, the videos are required to transmit with high bitrates
and less rebuffering time or stalling ratio. However, due to the
fluctuation and unpredictability of network conditions, blindly
achieving high bitrates may heavily increase the probabilities
of the rebuffering event. Hence, several rate adaptation meth-
ods have been proposed to consider these factors. Further,
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from the video content provider’s perspective, they aim to
provide video streaming services with less stalling ratio but
lower costs, where it’s also necessary to trade off the stalling
ratio against the cost. Thus, the services are required to employ
scheduling algorithms for balancing the two. In brief, such
aforementioned observations are being left on the horns of
a classic dilemma: in the video transmission tasks, both the
quality of experience (QoE) and quality of service (QoS) are
evaluated with contradicted metrics (§II-A). Hence, how to
generalize a strategy to effectively trade-off those key factors?

Unfortunately, as much as the fundamental problem has
already been published about two decades [2], current ap-
proaches, either heuristics or learning-based methods, fall
short of achieving this goal. On the one hand, recent heuris-
tics often use existing models [3], [4] or specific domain
knowledge [5] as the basic working principle. However, such
approaches sometimes require careful tuning and will backfire
under the circumstance that violated with presumptions, which
fails in achieving acceptable performance under all considered
scenarios. On the other hand, learning-based methods [6], [7]
leverage deep reinforcement learning (DRL) to train a neural
network (NN) by interacting with the environments without
any presumptions, aiming to obtain a higher score computed
by the reward function, where the function is often defined as
a linear-based equation with the combination of weighted sum
metrics. Nevertheless, although the recent RL-based scheme
the potential to outperform existing heuristics in most cases,
in this study, we empirically illustrate that i) an inaccurate
reward function may mislead the RL-based algorithm to gener-
alize bad strategies, since ii) the actual requirement can hardly
be presented by the linear-based reward function with fixed
weights. Moreover, iii) considering the diversity of real-world
network environments, we can hardly give a proper reward
function that can perfectly fit any network conditions (§II-B).
As a result, despite its ability to gain a higher numerical reward
score, such training schemes may generalize a strategy that
hardly meets the basic rules of the actual requirements.

Taking a look from another perspective, we observe that
the aforementioned problem can be naturally written as a
deterministic goal or requirement [8]. E.g., in most cases, the
purpose of the adaptive bitrate (ABR) streaming algorithm is to
achieve lower rebuffering time first, and next, reaching higher
bitrate [9]. It is pretty straightforward that it can be easily
understood and refined by others. To this end, we attempt
to train the NN based on the assigned requirement with-
out reward engineering. Unfortunately, off-the-shelf learning-
based algorithms cannot optimize the policy like this since
they cannot provide any gradient information to guide the
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algorithm towards a better performance directly. Hence, we
ask if self-play learning can help to tame the complexity of
video transmission services with the actual requirement and
primarily, without reward engineering.

Inspired by this opportunity, we envision a self-play rein-
forcement learning-based framework, known as Zwei 1, which
can be viewed as a solution for tackling the video transmission
dilemma (§III). The key idea of Zwei is to generalize a strategy
that can always meet the actual requirement. Specifically, we
rollout decisions in the process of video transmission services.
In the MC search process, many simulated trajectories starting
from the starting state are generated following the current pol-
icy, and the expected long-term win rate will be estimated by
averaging the battle results from each of the trajectories. The
battle result is determined by a fundamental question: given
two strategies collected from the same environment, which
is closer to the actual demand? Having estimated the long-
term win rate, Zwei then updates the NN by increasing the
winning sample’s probabilities and reducing the possibilities
of the failure sample. In this work, we use the state-of-the-art
policy gradient method, namely Dual-clip Proximate Policy
Optimization (Dual-PPO) [10] with adaptive entropy weight
decay to optimize the NN (§III-C).

We evaluate Zwei’s potential using trace-driven analyses of
various representative video transmission scenarios. To achieve
this, we build several faithful video transmission simulators
that can accurately replicate the environment via a real-
world network dataset. Specifically, we transfer our proposed
framework to three different tasks (§II-A), including adaptive
video streaming, crowd-sourced live streaming, and real-time
communication service. For each task, we have to face
several challenges, such as design adequate NN representation,
determine its input and output, define various requirements,
as well as decide its baselines and evaluation methodologies.
As expected, evaluation results demonstrate the superiority of
Zwei against existing state-of-the-art approaches on all tasks.
1) We evaluate Zwei according to four different requirements

in the adaptive video streaming scenario. Results show
that Zwei outperforms existing adaptive bitrate (ABR)
algorithms under any form of requirement. Specifically,
in the requirement of minimizing rebuffering time and
maximizing the video bitrate, Zwei betters recent work with
the improvements on Elo rating [11] of 32.24% - 36.38%.

2) Zwei performs well in crowd-sourced live streaming (CLS)
scheduling task, reducing the overall costs by 22% and
decreasing over 6.5% on the overall stalling ratio compared
to prior study, namely LTS [12].

3) Zwei generalizes well in the real-time communica-
tion (RTC) scenario. Comparing the performance of Zwei
and state-of-the-art heuristics WebRTC [13], we observe
that Zwei effectively improves 11.34% on average receive
rate, but reduces 20.49% on loss ratio and 62.95% on 95-
percent round-trip-time (RTT).

In the rest of the paper, we investigate how to adapt Zwei
to the traditional RL settings, i.e., no-regret reinforcement
learning scenario. We propose Zwei+, a novel self-play RL

1Zwei: means the number two, or double in German
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Fig. 1. A brief introduction of today’s video transmission service. As
shown, the service is mainly composed of adaptive streaming (client-to-
server), crowd-sourced live streaming (server-to-client), and real-time com-
munication (client-to-client) (§II-A).

framework that is incrementally implemented based on the
Zwei framework. Considering that the conventional no-regret
reinforcement learning process, The key idea of Zwei+ is
to apply a new battle competition phase. For each collected
trajectory, the phase identifies which trajectories, collected
from other environments, are also useful for updating. To
apply Zwei+ in the ABR scenario, we implement and design
a specific similarity function by using the mean and variance
for each network trace. Experimental results show that, in
the traditional RL settings, Zwei+ can also converge into the
optimal ABR policy, which decreases the total rebuffering time
by 40%-89% and improves the average bitrate by 1% to 21%
compared with off-the-shelf ABR algorithms.
Contributions: This paper makes three key contributions.
• We point out the shortcoming of learning-based schemes in

video transmission tasks and employ Zwei, a self-play re-
inforcement learning framework, for tackling the problems.

• We implement Zwei into three representative video trans-
mission scenarios, including rate adaptation, transmit
scheduling, and rate control. We have to develop a new
NN representation for each task, determine requirements,
and construct a faithful offline simulator. Trace-driven ex-
perimental results illustrate that Zwei outperforms existing
schemes on all considered scenarios.

• We further present Zwei+, that extends Zwei to adapt the
vanilla no-regret reinforcement learning scenario. Moreover,
we implement Zwei+ on the ABR task.

II. BACKGROUND AND CHALLENGES

In this section, we first formally introduce the background of
adaptive video streaming scenarios, including adaptive stream-
ing (client-to-server), crowd-sourced live streaming (server-to-
client), and real-time communication (client-to-client service),
and then we briefly elaborate key challenges of each service.

A. Video Transmission Services
To better understand the limitations that conventional video

streaming services suffering from, we plot the general service

Authorized licensed use limited to: Tsinghua University. Downloaded on November 30,2021 at 06:49:46 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3063620, IEEE
Transactions on Multimedia

3

TABLE I
REQUIREMENTS FOR EACH VIDEO TRANSMISSION TASKS.

Transmission Type Is ABR? Requirement
Adaptive Streaming X Rebuffering Time1↓, Bitrate2↑

Crowd-sourced Scheduling × Stalling Ratio1↓, Cost2↓
Real-time Communication X Latency1↓, Loss1↓, Bitrate2↑

work-flow in Figure 1. As shown, the service commonly
consists of three parts:

Adaptive Video Streaming. In the Client-to-Server scenario,
users often adopt a video player to watch the video on demand.
First, video contents are pre-encoded and pre-chunked as sev-
eral bitrate ladders on the server. Then the video player, placed
on the client-side, uses adaptive bitrate algorithms (ABR) to
dynamically pick the proper bitrate for the next chunk to
varying network conditions. Specifically, the bitrate decisions
should achieve high bitrate and low rebuffering on the entire
session [14]. We called it adaptive bitrate streaming.

Crowd-sourced Streaming. We now consider a typical
Server-to-Client service, if we were the content provider and
currently we had multiple content delivery networks (CDNs)
with different costs and performance, how to schedule the
users’ requests to the proper CDN, aiming to provide live
streaming services withing less stalling ratio and lower cost? In
common, we call that crowd-sourced live streaming(CLS) [12].

Real-Time video Communication. Besides, in our daily life,
there exists lots of Client-to-Client Services. For example, we
usually chat with other users instantly via a video call, namely
Real-Time video Communication (RTC). The RTC system
consists of a sender and a receiver. During the session, the
sender adjusts the sending bitrate for the next period, aiming
to achieve the high video bitrate, low round-trip time (RTT),
and less loss ratio [7].

We list the representative requirement for each video trans-
mission task in Table I. We label the underlying metric orderly
since each metric has attentive priority (e.g., the priority of
low rebuffering time is higher than that of high bitrate in
the ABR scenario). The video transmission algorithm is often
required to obtain better performance under various mutual
metrics, making the critical principle of designing a traditional
networking algorithm: best-effort delivery [2]. While learning-
based approaches pursue best-performance delivery, aiming to
maximize the performance over all considered networks. To
this end, what’s the Achilles’ heel of the best-performance
approach?

B. Challenges

Recent video transmission algorithms mainly consist of two
types, i.e., heuristics and learning-based schemes. Heuristic
methods utilize an existing fixed model or domain knowledge
to construct the algorithm, while they inevitably fail to achieve
optimal performance in all considered network conditions due
to the inefficient parameter tuning (§VIII-A,[6]). Learning-
based schemes train a NN model towards the higher reward
score from scratch, where the reward function is often defined
as a linear combination of several weighted metrics [12], [7],

Fig. 2. We show average bitrate and rebuffering time for each ABR method.
ABRs are performed over the HSDPA network traces.

Fig. 3. The comparison of linear-based optimal and requirement-based
optimal strategy. Results are evaluated on fixed (0.5mbps) and HSDPA [18]
network traces under ABR scenario, and we can see the difference between
the actual requirement and the optimal trajectory generated by the linear-based
reward function.

[6]. Nevertheless, considering the characteristics of the video
transmission tasks above, we argue that the policy generated
by the linear-based reward fails to always perform on the right
track [8]. In this study, we set up two experiments in the ABR
scenario (IV) to prove this conjecture. We use this scenario to
describe the challenges because the ABR task is the easiest to
understand and closest to the user in the video transmission
scenario [1].

Observation 1. The best learning-based ABR algorithm
Pensieve [6] is not always standing for the best scheme on
every network traces.

Given a deterministic QoE metric with linearly combin-
ing of several underlying metrics [15], [16], considering the
ABR process as a Markov Decision Process (MDP), many
approaches have been proposed to learn ABR algorithms via
reinforcement learning (RL) method. E.g., RobustMPC [15] is
a model-based RL approach that uses a solver and an offline
ABR simulator to maximize QoE objectives by planning, as
Pensieve [6] is a model-free RL approach that learns the
system dynamic via interacting with the ABR environment.
However, such a method heavily relies on the accuracy of
the given QoE metric. Especially, how to set a proper QoE
parameter for each network condition is indeed a critical
challenge for training a good ABR algorithm. To verify
whether QoE parameters have influenced the performance of
ABR algorithms, we set up an experiment to report average
bitrate and rebuffering time for each ABR method, including
Rate-based, BOLA, Pensieve, RobustMPC, and Zwei ( [17],
[15], [6], §IV-A3). Results are evaluated over the HSDPA
network traces. As shown in Figure 2, we can see that,
despite the outstanding performances that Pensieve achieves,
the best RL-based ABR algorithm does not always stand for
the best scheme. By contrast, our proposed method Zwei di-
rectly learns the policy w.r.t the assigned requirements, which
eventually consistently outperforms existing approaches.

Observation 2. Existing linear-based weighted reward func-
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tion can hardly map the actual requirement for all the network
traces of the given network condition (e.g., 4G and WiFi
scenarios).

To better understand the effectiveness of weighted-sum-
based reward functions, we compare the optimal linear-based
strategy with requirement-based under two representative net-
work traces. A linear-based optimal is the policy that obtains
maximum reward. The requirement-based optimal stands for
the closest approach in terms of the given requirement. Unsur-
prisingly, from Figure 3 we observe that linear-based optimal
policy performs differently compared with the requirement-
based optimal strategy. The reason is that the linear-based
optimal policy heavily relies on the given weights, while the
weighted parameters are not allowed to be adjusted dynami-
cally according to current network status (e.g., throughput and
jitter [19]), which finally leads to the failure of guiding the
optimization process on the right track. Generally, we believe
that the policy learned by reward engineering might fall into
unexpected conditions.
Summary. In general, we observe that no matter how precisely
and carefully the parameter of the linear-based reward function
tunes, such tuned functions can hardly meet the requirement
of any network conditions. E.g., the parameter of stable and
unstable network conditions are not the same. Meanwhile,
existing studies have also figured out this observation. [20],
[21]. To that end, the traditional learning-based scheme,
which has often been optimized via the assigned functions,
will eventually fail to provide reliable performance on any
network traces. We, therefore, attempt to learn the strategies
from the original demands.

III. ZWEI DESIGN

In this section, we briefly introduce Zwei’s details, including
its key principle, the basic training algorithm, and the advanced
improvements.

A. Self-play Method

As mentioned before, we attempt to generalize the strategy
based on actual requirements instead of linear-based reward
functions, in which the requirement is often defined by multi-
objective goals. For example, as listed in Table I, the main re-
quirement of adaptive streaming is to obtain lower rebuffering
time while achieving higher video bitrates. However, as we
have already proved (§II-B), it is quite challenging to design
an adequate reward function w.r.t the requirement. Fortunately,
given two different policies, we can easily identify which one
performs closer to the assigned requirement. Following this
step, we model the training process as self-play learning that
enables the NN to explore better policies and suitable rewards
via competing itself. Here suppose that, given any policies, we
can compute the outcome that represents the probability of one
beating the other in the same video transmission environment,
such as adaptive streaming and RTC. We formulate the self-
play process as follows. Note that we refer to a task with the
same setting as a game.

Definition III.1. Suppose two agents, let θ be the weights of
a neural net, agent 1 adopts trajectory Tu ← T(πθ, g1,Env),

and agent 2 adopts trajectory Tv , where g1 and g2 are
different random seeds. We can define a symmetric zero-sum
functional-form game (FFG) [22] to be indicated by a function

φ : Tu × Tv → R. (1)

Where φ represents the game rule, which is anti-
symmetrical. φ > 0 means agent 1 beats agent 2. The higher
the win rate the better for agent 1.

Consider every FFG can be decomposed into two parts, i.e.,
transitive and cyclic game, where the transitive game means
the rules of winning are transitive across different players,
and we call a game is cyclic if wins against some agents are
necessarily counterbalanced with losses against others, such
as rock-paper-scissors or modern MOBA games [22]. In this
work, one of the challenges is to define a proper rule for each
video transmission task. The goal of the rule is to separate
the requirement into two parts, i.e., the transitive part and
the cyclic part. The transitive part enables us to determine
which trajectory is better between two candidates, as the cyclic
part aims to figure out the best responses among the set of
trajectories on the Pareto Front. We present a hyper-parameter
λ to eliminate the cyclic part. The FFG will transfer to a
transitive game if λ is small enough. We discuss the usage of
λ for each requirement on different video transmission tasks
in § IV-§ VI.

Theorem III.1. With φTv (·) := φ(·, Tv), if the current game
is transitive, we can have the best response oracle defined by

T∗ = Oracle(π, φTv (·)), (2)
π∗θ = arg max

θ
T∗(πθ, g,Env) (3)

s.t. φT2(T∗) > φT2(T) + φ (4)

which can be implemented by an RL algorithm or evolutionary
algorithm.

Proof. A task is transitive if there exists a rating function f
that can measure the performance between two trajectories:

φ(Tu, Tv) = f(Tu)− f(Tv) (5)

We start training against a fixed opponent. Thus, assuming
we fix agent 2, solving FFG with transitive game normally
reduces to finding

T ∗u = arg maxφTv (Tu) = arg max f(Tu), (6)

as the choice of the fixed agent has no difference to the optimal
trajectory. To this end, we can train against a fixed opponent
iteratively till the best response generates. Just like self-play,
which generates a sequence of opponents. Training against a
sequence of opponents prevents gradients from vanishing due
to large skill differentials [23]. �
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Fig. 4. Overview of Self-play Reinforcement Learning Framework (Zwei).
The framework is mainly composed of four phases: rollout sampling, battle
competition, win rate estimation, and policy optimization.

B. Zwei Overview

We propose Zwei, a self-play reinforcement learning frame-
work for video transmission services. Zwei treats the learning
task as a competition between distinct trajectories sampled
by itself, where the competition outcome is determined by a
set of rules, symbolizing which one is closer to the given
requirement. Subsequently, Zwei updates the NN towards
achieving a better outcome. Figure 4 presents the main phases
in our framework. The pipeline can be summarized as follows:

Phase1: Rollout Sampling. First, we aim to sample N
different trajectories Tn = {sn0 , an0 , sn1 , an1 , . . . , ant }, n ∈ N
according to the given policy π(s) under the same environ-
ments (at ∼ π(st)) and the starting point (i.e., the gray
point in Figure 4). Here, we can select Monte Carlo Tree
Search (MCTS) to implement the process. However, it’s
quite impractical to directly apply the MCTS method into
the searching process since Zwei requires continuous state
spaces rather than only the discrete ones, whereas vanilla
MCTS methods diverge [24]. To that end, we reasonably
propose a Deep Neural Network (DNN) to map the continuous
state spaces to the discrete actions’ probabilities. Specifi-
cally, Considering that the proposed algorithm needs high
efficient yet stable sampling scheme, we then employ Gumbel-
Softmax [25] trick for picking a sample from the categorical
distribution. Such reparameterization trick draws an action at
via Eq 7,

at = arg max
i

(
gi + log π(st)i

)
(7)

g = − log(− logµ) (8)

where π(st) is a categorical distribution of the given state
st, g is the Gumbel(0, 1) distribution that can be sam-
pled using inverse transform sampling by drawing µ ∼
Uniform(0, 1) [26]. Next, we record and analyze the un-
derlying metric for the entire session. Finally, we store all the
sample Tn into a collection D.

Phase2: Battle Competition (BC). To better estimate how
the current policy performs, Zwei requires a module to label
all trajectories from D: given two different trajectories, Ti
and Tj which are all collected from the same environment
settings (Ti, T j ∈ D)), we attempt to identify which trajectory

Fig. 5. We plot the underlying win rate for different average bitrate and
average buffer occupancy.

is positive for NN updating, and which trajectory is generated
by the worse policy. Thus, a predefined requirement called φ is
given to determine the better trajectory between the given two
candidates, in which better means which trajectory is closer
to the requirement. At the end of the session, the terminal
position st is scored w.r.t the rules of the requirement for
computing the game outcome o: −1 for a loss, 0 for a draw
game, and +1 for a win. The equation is listed in Eq. 9.

oji = φ(Ti, Tj). (9)

s.t. oji = {−1, 0, 1}, Ti, Tj ∈ D. (10)

Phase3: Win Rate Estimation. Next, having computed
the competition outcome oi for any two trajectories, we then
attempt to estimate the average win rate ri for each trajectory
Ti in D. The equation is listed in Eq. 11. Notice that the
accuracy of the win rate estimation heavily depends on the
number N of trajectories.

wi = E[φ(Ti, )] =
1

N

N∑
u

oui . (11)

Phase4: Policy Optimization. In this part, given a batch
of collected samples and their win rate, our key idea is to
update the policy via elevating the probabilities of the winning
sample from the collected trajectories, and diminishing the
possibilities of the failure sample from the worse trajectories.
In other words, the improved policy π at state st is required to
pick the action at which produced the best estimated win rate
wt, i.e., at = arg maxaE[wt(st, a)]. Hence, We use Dual-
PPO (Dual-clip Proxy Policy Optimization [10]), a state-of-
the-art reinforcement learning method that is incrementally
implemented based on Proxy Policy Optimization (PPO) [27].

C. Optimizing with Relative Win Rate

As listed before, Zwei’s basic training algorithm is derived
from a fundamental presumption: the win rate of each state
st will be converged to zero, that means, a draw game.
However, we argue that the distribution of the win rate on
each state s is different. Thus, we set up an experiment in
the ABR scenario: we select a short video clip encoded with
six bitrate levels and five chunks and list all the possible
trajectories under the same network trace. Then we compute
the underlying win rate for each state st via φ (minimizing
rebuffering time and maximizing average bitrate), where st is
represented by Average Bitrate and Average Buffer. This makes
sense since recent work has proved that these two metrics are
critical features for the ABR task [16]. Experimental results
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on Figure 5 illustrate that different states map different win
rates. E.g., the win rate will degrade to 25% if the average
bitrate is lower than 1 Mbps and the average buffer is higher
than 40 seconds. At the same time, the win rate will achieve
the highest score under the conditions that the average bitrate
is about 2 Mbps and the average buffer is in the range of
10 seconds to 20 seconds. What’s more, we also consider
the correlation between the average buffer and win rate, as
well as the relationship between average bitrate and win rate,
respectively. Results also indicate the influence on the win rate
by different values of current states.

To this end, we further add the relative win rate to avoid the
bias, which is caused by the high variance in each situation. In
detail, Zwei with Baselines consists of a policy network and
a value network. The Dual-PPO algorithm adopts the dual-
clip method to restrict the step size of the policy iteration and
update the NN by minimizing the following clipped surrogate
objective. If Ât > 0, Dual-PPO will work equal to the original
PPO algorithm [27]. Otherwise, Dual-PPO will clip the ratio
pt(θ) with a lower bound of the value Ât. Zwei’s NN consists
of a policy network and a value network. The loss function of
the policy network are computed as Eq. 13,

LPPO = min
(
pt(θ)Ât, clip

(
pt(θ), 1− ε, 1 + ε

)
Ât

)
. (12)

LPolicy =

{
Êt[max(LPPO, cÂt)] Ât < 0

Êt[LPPO] Ât ≥ 0
(13)

where Ât is the advantage function which represents the rela-
tive value between the future win rate and the current win rate:
Ât = wt+1 − wt, pt(θ) denotes the probability ratio between
the policy πθ and the old policy πθold : pt(θ) = πθ(at|st)

πθold (at|st)
ε and c are hyper-parameters that control how to clip the
gradient. We set ε = 0.2, c = 3 as consistent with the original
paper [10].

In practice, considering that Zwei uses basic TensorFlow
operations (< 2.0) to set up a static computational graph, while
the static graph is tough to be changed during the training, we
modify LPolicy (Eq. 13) into an easier implementation version,
described in Eq 14.

LPolicy = (Ât < 0) max(LPPO, cÂt) + (Ât ≥ 0)LPPO (14)

The value network Vθp is updated via minimizing the

error of Ât: LValue = 1
2 Êt

[
Ât

]2
. Furthermore, we add

the entropy of the policy H(st; θ) into the loss func-
tion to encourage exploration feedback. Here Hπθ (st) =
−
∑
i∈A πθ(ai|st) log πθ(ai|st)., β is the entropy weight. To

sum up, we summarize the loss function LZwei in Eq. 15.

∇LZwei = −∇θLPolicy +∇θpLValue +∇θβHπθ (st). (15)

D. Adaptive Entropy Weight Decay

The performance of on-policy reinforcement learning meth-
ods is sensitive to the entropy weight β. If the value of the
weight is too small, the overall training will be converged
quickly but fail to achieve optimal performance. For instance,
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Fig. 6. The comparison of typical reinforcement learning algorithm and Dual-
PPO. What’s more, we also report the effectiveness of adaptive entropy weight.

the default settings in most environments are 0.01 [28]. On
the contrary, if the weight is too big, the value network will
fail to estimate the accurate baselines due to the high variance
of collected trajectories. For example, in practice, the starting
weight of Pensieve [6] is 5. As a result, the learned policy
eventually lacks stability compared with the optimal strategy.

To alleviate this issue, we propose a novel training trick
called adaptive entropy weight decay to dynamically adjust
the entropy weight βt during the training process. In detail,
we derive the collected dataset into two parts, i.e., a training
set and a validation set. Zwei is trained over the training set
and validated on the validation set every 100 epochs. In the
beginning, the entropy weight is initialized at β0. Then the
weight will be decreased if the overall performance over the
validation set has no longer been improved 10 times. At step
t, the entropy weight is updated as βt = λβt−1, in which λ
means the decay rate. In this work, we set β0 = 1, λ = 0.8.

In general, we apply Dual-PPO with adaptive entropy
weight to optimize Zwei. It’s not gilding the lily since Fig-
ure 6 illustrates that Dual-PPO’s performance is higher than
A2C [28] and Vanilla-PPO [27]. Moreover, we also prove
the effectiveness of utilizing the adaptive entropy weight. We
observe that Dual-PPO with fixed entropy weight can hardly
achieve good results.

E. Training Methodology

The training procedure of Zwei is summarized in Algo-
rithm 1. As shown, Zwei’s workflow mainly consists of two
parts, i.e., exploration and exploitation. Zwei uses a multi-
agent training method, which employs 12 forward propagation
agents and one central agent.

Sample Complexity The main difference between Zwei and
the conventional RL method is the sample efficiency. Zwei
requires N samples per-step, as the conventional reinforcement
learning method only requires 1 sample. To this end, for Zwei,
given the number of the action A, for S states, each iteration
needs O(NAS2) steps, or slightly faster if the transition
function is sparse.

Basic NN Implementation. We use TFlearn to implement
the NN and leverage TensorFlow to construct Zwei 2. Zwei
consists of two NNs, including a policy network and a value
network. The policy network takes an n-dims vector with
Softmax active function as the output. The value network
outputs a value with Tanh function scaled in (−1, 1). We apply

2https://github.com/thu-media/Zwei
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Algorithm 1 Zwei Training Procedure
Require: Environment Env; Rule φ.

1: Initialize parameters θ with random weights;
2: repeat
3: D = {};
4: Env ←Sample environment settings, e.g., network

trace T, video V, or CDN configuration c;
5: for i ∈ {1, 2, . . . ,N} do . Rollout Sampling;
6: Get state st from Env.
7: Ti = {};
8: while not Terminal do
9: Perform at according to policy πθ(at; st).

10: Ti ← Ti
⋃
{st, at}.

11: Receive new state st+1

12: D← D
⋃
Ti

13: for pairs(Tu, Tv) ∈ D do . Battle competition;
14: Determine win or loss: ovu = φ(Tu, Tv);
15: for Tu ∈ D do . Win rate estimation;
16: Estimate win rate: wu =

∑N
i oiu
N .

17: for st, at ∈ Tu do . Policy Optimization;
18: Update θ and θp with LZwei (Eq. 15) using

collected samples and win rate (st, at, wu);
19: until Converged

Throughput
Estimation

Playback BufferDownload

Request

Next chunk’s bitrateServer

ABR Algorithms

Client

1 2 3

1 2 3 …

…

1 2 3 …LD

SD

HD

Fig. 7. System architecture of typical adaptive video streaming. The ABR
algorithm is placed on the client-side.

the same set of hyper-parameters for training the NN, i.e.,
sample number N = 16, learning rate α = 10−4, and entropy
weight decay λ = 0.8. Furthermore, considering the character-
istics of video transmission tasks, we construct different NN
representations for implementing NN architectures.

IV. CASE I: ADAPTIVE VIDEO STREAMING

We first understand how Zwei works in the traditional
adaptive video streaming scenario. Technically, we train an
NN-based adaptive bitrate (ABR) algorithm w.r.t our proposed
method. Detailing the working process, including testbed
setup, baseline introduction, and Zwei vs. Existing ABR
schemes.

Adaptive Video Streaming Overview As demonstrated in
Figure 7, the traditional video streaming architecture consists
of a video player client with a constrained buffer length and
an HTTP-Server or Content Delivery Network (CDN). The
video player client decodes and renders video frames from
the playback buffer. Once the streaming service starts, the
client fetches the video chunk from the HTTP Server or CDN
orderly by an ABR algorithm, and, in the meanwhile, the ABR
algorithm, implemented on the client-side, determines the next

chunk and next chunk video quality via throughput estimation
and current buffer utilization.After finished playing the video,
several metrics, such as total bitrate, total rebuffering time,
and total bitrate switch will be summarized as a QoE metric
to evaluate the performance.

A. Detailed Implementation

1) NN Architecture: Inputs. NN takes past t chunks’
network status vector Ck = {ck−t−1, . . . , ck} into NN, where
ci represents the throughput measured for video chunk i.
Specifically, ci is computed by ci = nr,i/di, in which nr,i
is the downloaded video size of chunk i with selected bitrates
r, and di means download time for video chunk nr,i. Besides,
we also consider adding video content features into NN’s
inputs for improving its abilities on detecting the diversity
of video contents. In details, the learning agent leverages
Mk = {Nk+1} to represent video content features. Here Nk+1

is a vector that reflects the video size for each bitrate of the
next chunk k+ 1. The last essential feature for describing the
ABR’s state is the current video playback status. The status is
represented as Fk = {qk−1, Bk, Dk,mk}, where qk−1 is the
video bitrate for the past video chunk selected, Bk, Dk are
vectors which stand for past t chunks’ buffer occupancy and
download time, and mk means the normalized video chunk
remaining. We takes past chunk k = 8.

Outputs. The output is an n-dim vector indicating the
probability of the bitrate being selected under the current ABR
state Sk. In this work, we set the bitrate level as 6, which is
widely used in existing ABR papers [6], [19].

NN Representation. We now describe Zwei’s NN repre-
sentation. First, it leverages two Conv-1D layers (filter num-
ber=128, kernel size=4) to extract features from the throughput
and delay sequence. Meanwhile, Zwei adopts several fully-
connected layers (neuron number=128) for obtaining implicit
features. Then all the features will be merged by the concen-
trated layer. Next, the network will be split into two sides,
i.e., the policy network and the win rate network. On the one
side, the output of the NN’s policy network is a 6-dims vector,
which represents the selected probabilities for each bitrate. We
utilize the ReLU active function for each feature extraction
layer and leverage Softmax operation for the last layer. On the
other size, NN’s win rate network outputs a scalar, which uses
tanh function as the active function.

2) Requirements for ABR tasks.: Recall that the require-
ment for ABR tasks is diverse, such as selecting bitrates with
high bitrate and less rebuffering time [9], as well as picking
bitrates with higher video quality and lower rebuffering ratio.
To that end, in this case, we implement several representative
requirements for evaluating Zwei, which includes:
• Minimizing rebuffering and maximizing video bitrates (re-

buffer, bitrate). Prior research has often added additional
smoothness metrics to control the bitrate change of the
entire session. While in practice, the following metric is
neglectable for the ABR algorithm [9]. Hence we first
propose a requirement that constructs the ABR algorithm
with minimizing rebuffering time and maximizing video
bitrates. The detailed rule of the requirement is described
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Algorithm 2 Requirement for the ABR task.
Require: Trajectory Tu, Tv;

1: Average bitrate R̄u, R̄v , average rebuffering time Ēu, Ēv
from the given trajectories Tu, Tv .

2: Initialize Return s = {−1,−1};
3: if |Ēu−Ēv|min(bu,bv) < η or |R̄u−R̄v|min(ru,rv) < η then
4: s = {0, 0}; . A draw game.

5: else if |Ēu−Ēv|
min(Ēu,Ēv)

< η then
6: si ← 1, i = arg maxi∈{u,v} R̄;
7: else
8: si ← 1, i = arg mini∈{u,v} Ē;

9: return s;

in Alg. 2, where we set the threshold η = 0.01. As listed in
line 4, we can see that a draw game will be determined if
the absolute percentage of the two bitrates and rebuffering
time is lower than η. It can be defined as a cyclic game. At
the same time, line 5 indicates a transitive game. We can
easily output the winner according to the given rules (line
6 - line 8).

• Less rebuffering time and higher perceptual video qual-
ities (rebuffer, quality). In recent years, several attempts
have also been proposed to pick the video chunk with
higher video quality rather than video bitrate [7], [29].
We, therefore, ask if Zwei can handle the requirement that
allows the algorithm to achieve higher video qualities as
well as lower rebuffering time. In this work, the perceptual
quality is measured by Video Multi-Method Assessment
Fusion (VMAF) [30], which stands for the state-of-the-
art video quality assessment metric. We take past selected
video quality, buffer occupancy, throughput, download time,
quality, and video size for each bitrate of the next chunk,
and chunk remaining as the input. Such settings are different
from other requirements.

• Achieving better QoE scores (Better QoE). To better
demonstrate that Zwei can handle various type of require-
ments, we propose a vanilla requirement that aims to max-
imize standard QoE objective function QoElin [15], [6].
Eq 16 lists the details of QoElin, in which N is the total
number of chunks during the session, Rn represents the each
chunk’s video bitrate, En reflects the rebuffering time for
each chunk n. We set the rebuffering penalty as 4.3, as
suggested by [6].

QoE =

N∑
n=1

Rn − 4.3

N∑
n=1

En −
N−1∑
n=0

|Rn+1 −Rn| , (16)

• Less rebuffering time, lower smoothness, and higher video
bitrates (rebuffer, smoothness, quality). Besides, we believe
that Zwei can also solve the overall optimization problem
with smoothness metric. Thus, we apply a 3-stage specific
requirement, i.e., 1) reducing rebuffering time, 2) decreasing
smoothness, and eventually, 3) increasing video bitrates.
Such requirements are quite challenging since Zwei has
to balance three mutual objectives, as the searching space

seems larger than that of achieving a proper equilibrium
between two objectives.

3) ABR Baselines: In this part, we select several represen-
tational ABR algorithms from various type of fundamental
principles:

1) Rate-based (RB) [31]: the basic baseline for ABR prob-
lems. Firstly, it leverages harmonic mean of past five
throughput measured as future bandwidth. Next it picks
the next chunks’ bitrate with closest and lower than the
predicted bandwidth.

2) Buffer-based Approach (BBA) [3]: A buffer-based ap-
proach that dynamically chooses next chunks’ bitrate ac-
cording to the current buffer occupancy.

3) BOLA [17]: the most popular buffer-based ABR scheme
in practice. BOLA turns the ABR problem into a utility
maximization problem and solves it by using the Lyapunov
function. We use BOLA provided by the authors [32].

4) RobustMPC (RMPC) [15]: a state-of-the-art heuristic
method that maximizes the objectives by jointly consid-
ered the buffer occupancy and throughput predictions. We
implement RobustMPC by ourselves.

5) HYB [19]: A hybrid algorithm that considers both the
predicted throughput and current buffer occupancy. For
each chunk, HYB picks the highest bitrate that can avoid
rebuffering time by only considering one step ahead.

6) Pensieve [6]: the state-of-the-art learning-based ABR
scheme, which utilizes deep reinforcement learning to
select bitrate for next video chunks. We use the pre-trained
model provided by the authors.

7) Tiyuntsong [8]: the first study of multi-objective op-
timization ABR approach. Tiyuntsong uses the actor-
critic method to update the NN via the competition with
two agents under the same network condition. Note that
Tiyuntsong’s learning agent uses DRL to update gradients
w.r.t the sample generated by the agent independently,
which not only sample inefficient but also reaching the
optimal policy.

8) Comyco [29]: Comyco is a video quality-aware ABR
approach that leverages imitation learning methods for
training the policy via imitating expert trajectories, enor-
mously improving the learning-based methods by tackling
the two fundamental issues, i.e., low sample efficiency and
lack of awareness of the video quality information. We
adopt the pre-trained model provided by the authors [29].

4) Evaluation Metrics: The Elo rating [33] is a traditional
method for calculating the relative performance of players
in zero-sum games. Specifically, a player’s Elo rating is
represented by a number that may change w.r.t the outcome
of games played. After every game, the winning player takes
points from the losing one, where the difference between the
ratings of the winner and loser determines the total number
of points gained or lost after a game. Thus, the Elo rating
system is suitable to compare different schemes via win rate
information only. We set the initial Elo rating as 1000 [8].
For more information about the Elo rating, please refer to the
original paper [33].
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Fig. 8. This group of figures show the comparison results of Zwei and other ABR approaches, where the goal of Zwei is to minimize rebuffering while
maximizing video bitrates. Results are evaluated in the typical ABR system with HD Videos (1080P, minimum bitrate=0.3mbps, maximum bitrate=4.3Mbps).

5) Detailed Implementation: We use the standard ABR
simulation environment [6].

Network and Video Dataset We train and validate
Zwei on various network datasets, including HSDPA [18],
FCC [34] and Oboe [19]. Meanwhile, we adopt EnvivioDash3,
a video that commonly used in recent work [19], [6], [29],
to validate Zwei, where the video chunks are encoded as
{0.3, 0.75, 1.2, 1.8, 2.8, 4.3} Mbps.

B. Results Analysis

Zwei vs. Existing schemes. We compare Zwei with
existing ABR schemes over the HSDPA dataset. Results are
computed as Elo-score [33] and reported in Figure 8(a).
Through the experiments, we can see that Zwei outperforms
recent ABR approaches. In particular, Zwei improves Elo-
score by 36.38% compared with state-of-the-art learning-based
method Pensieve and increases 31.11% in terms of state-
of-the-art heuristic method RobustMPC. Furthermore, Zwei
outperforms recent heuristics on Elo-rating of 158.52% (RB),
62.08% (HYB), and 56.76% (BOLA), respectively. Figure 8(b)
demonstrates that Zwei wins against proposed schemes, with
the high winning ratings of 91.55% (RB), 97.89% (BOLA),
91.55% (RMPC), 87.32% (HYB), 89.44% (Pensieve). Besides,
we illustrate the detailed results of the proposed methods on
average bitrate and average rebuffering in Figure 8(c). Results
show that Zwei can not only achieve the highest bitrate but also
obtain the lowest rebuffering under all network traces. Recall
that the main requirement is to obtain lower rebuffering time
and higher video bitrate.

Zwei vs. Tiyuntsong. Moreover, to better understand the
superiority of our proposed method, we compare Zwei with
the previously proposed self-learning scheme Tiyuntsong in the
same experimental settings. During the training process, we
report the Elo-curve on the same validation set in Figure 8(b).
As expected, Zwei, using different NN architectures, outper-
forms Tiyuntsong on average Elo-score of 35%. It’s worth
noting that, Tiyuntsong is also a self-play learning method
that uses the conventional actor-critic method to update the
NN for obtaining a higher requirement. We now explain
the key difference between our proposed method Zwei and
Tiyuntsong.
1) Tiyuntsong treats the ABR training task as a static game

with incomplete information, as the training process is done
by the competitive results generated by two independent
agents. On the contrary, Zwei rolls-out several trajectories
by sampling the same policy. In this way, the high variance
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Fig. 9. Comparing Zwei with existing ABR approaches with the goal of less
rebuffering and higher video quality.

of win rate results, which is caused by different policies,
will be effectively eliminated.

2) Tiyuntsong aims to update the policy via a long-term cumu-
lative win rate Wt, in which Wt = wt +γWt+1, γ = 0.99.
For each step, Tiytuntsong receives an instant win rate,
scaled in ∈ (0, 1). By contrast, Zwei employs Monte Carlo
sampling to compute the current win rate. Thus, as much
as Zwei’s training algorithm is equal to original actor-critic
methods with wt = 0 and n-step discounted factor γ = 1
in mathematics, we believe that the fundamental principle
of that two approaches is different.

Zwei with Different NN Architectures. This experiment
evaluates Zwei with all considered NN architectures and
compares their performance under the same network setting.
Zwei-1D is the standard ABR NN architecture proposed by
Pensieve [6], Zwei-2D stands for the advanced ABR NN
architecture proposed by QARC [7], and Zwei only leverages
three fully-connected layers sized {128, 64, 64}. Experimental
results are calculated with Elo-score and shown in Figure 8(b).
Unsurprisingly, when Zwei trains with some complicated NN
architecture (Zwei-1D and Zwei-2D), it generalizes poorly and
performs worse than the fully connected NN scheme. This
makes sense since ABR is indeed a light-weighted task that
can be solved in a practical and uncomplicated manner instead
of a NN incorporating some deep yet wide layers.

1) Rebuffering & Video quality: What’s more, Zwei can
generalize outstanding quality-aware ABR algorithms w.r.t
the assigned requirements, i.e., minimizing rebuffering and
maximizing video quality. Results are reported in Figure 9.
We observe that Zwei surpasses existing ABR algorithms,
with the improvements on Elo ratings of 12.58%-24.73%.
At the same time, detailed results on average quality and
rebuffering time demonstrate that Zwei reaches the best aver-
age video quality (66.19) among all the ABR candidates and
rivals recent ABRs on the average rebuffering time (0.016).
In particular, comparing the average quality and rebuffering
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TABLE II
WE REPORT THE AVERAGE BITRATE, REBUFFERING TIME, SMOOTHNESS

AS WELL AS QOE FOR EACH ABR SCHEME. In this part, we attempt to
maximize linear-based QoE objective function.

ABR
Bitrate
(Mbps)

Rebuffering
(s)

Smoothness
(Mbps)

QoE

RB 0.951±0.554 0.038±0.067 0.078±0.051 0.71±0.612
BBA 1.141±0.58 0.035±0.062 0.352±0.106 0.639±0.649

RMPC 1.142±0.612 0.019±0.052 0.139±0.063 0.921±0.622
HYB 1.081±0.578 0.003±0.029 0.207±0.086 0.86±0.534

Pensieve 1.081±0.553 0.008± 0.037 0.12±0.051 0.925±0.57
Zwei 1.126±0.557 0.015±0.08 0.087±0.047 0.975±0.632
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Fig. 10. Comparing Zwei with existing ABR approaches under the HSDPA
network traces. In this part, we minimize the rebuffering and smoothness, and
maximize the video bitrate.

time of Zwei with the state-of-the-art quality-aware ABR
algorithm Comyco, we find that Zwei betters Comyco on
the average quality of 2.21% at the cost of increasing the
average rebuffering time of only 6 milliseconds. Here, Zwei’s
rebuffering time is still acceptable, as it is similar to that of
RMPC performs.

2) Better QoE: Can Zwei solve the requirement of achiev-
ing a better linear-based QoE score? To answer the question,
we train and validate Zwei w.r.t the better QoE requirement.
Table II details each metric, including average bitrate, rebuffer-
ing, and smoothness. Zwei outperforms recent ABRs, with
the improvements on average QoE of 5.52% - 59.84% across
the HSDPA dataset. Moreover, we also find that Zwei wins
against the learning-based ABR approach Pensieve for almost
80% of the sessions. Specifically, Zwei slightly increases the
average rebuffering time compared with Pensieve (from 8 to
15ms), but heavily improves the average video bitrates (from
1.081 to 1.126Mbps), and in the meanwhile, reducing average
smoothness (from 0.139 to 0.087Mbps) in comparison of
RobustMPC.

3) Rebuffering, Smoothness, & Bitrate: In this requirement,
we attempt to minimize the rebuffering and smoothness, and
in turn, maximizing the video bitrate. Figure 10 shows the
comparison of several underlying metrics, including average
bitrate, rebuffering time, and smoothness. As expected, Zwei
(in gray) can avoid rebuffering and bitrate changes, as it also
obtains the highest bitrate. An interesting observation is that as
much as Zwei doesn’t provide the lowest rebuffering time and
bitrate changes among all ABR schemes, e.g., Zwei performs
slightly higher than Pensieve and HYB in terms of rebuffering
time and requires more bitrate changes compared with RB, the
learned policy wins most of the sessions, i.e., 76.06% on RB,
83.8% on BOLA, 52.82% on RMPC, 86.62% on HYB, and

(a) Piece-wise Linear Model (b) Workload - Cost

(c) Zwei vs. Existing Methods (d) Zwei Training Curve

Fig. 11. Results of Zwei on the CLS environment. We collect Zwei’s training
curve during the training process and observe that there also exists two stages
on the entire process.

69.72% on Pensieve.

V. CASE II: CROWD-SOURCED LIVE STREAMING

In this part, we evaluate Zwei in the Crowd-sourced Live
Streaming (CLS) scheduling task and compare its performance
with several state-of-the-art scheduling algorithms. Results
illustrate that Zwei can leverage historical CDN information
for providing the live video streaming service with less number
of blocked (or stalling) users and lower CDN costs.

CLS System Overview. Upon receiving viewers’ requests,
the CLS platform will first aggregate all stream data to the
source server, and then deliver the them to viewers through
CDN providers according to a certain scheduling strategy. We
treat the ratio of CDN i at time step t as xit . At time step
t, xAt of users are redirected to CDNA, while xBt and xCt
users are redirected to CDNB and CDNC , respectively. Note
that such ratios should satisfy: xAt + xBt + xCt = 1.

A. Detailed Implementation

Testbed Setup. As suggested by previous work [12], our
experiments are conducted on the real-world CLS dataset pro-
vided by Kuaishou, spanning 1 week (6 days for training and
1 day for testing). At each time, we select 3 candidates from
4 different CDN providers, and we fit a separate simulator
for each of them. Moreover, we change the decision every 1
minute, i.e., the decision duration=1. The CLS task lasts 1440
steps, i.e., 1-day (1440 minutes), to achieve the terminal state.
Such a task with long-term feedback rewards brings out a
great challenge to Zwei. Thanks to the high sample efficiency
feature of the Dual-PPO algorithm [10], we train Zwei for
only 2 hours to converge in a stable result, which is 2× faster
than the vanilla PPO algorithm [27].

CDN Configuration. The CDN configuration is demon-
strated in Figure 11. Consistent with previous work [12], we
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use a piece-wise linear model to characterize this relationship
between workload and block ratio (Figure 11(a)). Note that
the following features are extracted by the real CDN dataset.
What’s more, we define the CDN pricing model w.r.t various
CDN providers in the industry, such as Amazon E2 and Ten-
cent CDN, and plot the correlation between the workload and
cost in Figure 11(b). Specifically, given three heterogeneous
CDNs, i.e., CDNA, CDNB , CDNC , we set the unit price Pi
for each CDN as 0.72, 0.4, 0.8 respectively, where the price
means actual cost (CNY, Chinese Yuan) per Gigabytes. Thus,
we can compute the estimated intermediate cost cji for CDNi
at time j: cji = b̄ ∗wji ∗ Pi. Here we assume that each person
watches the live video streaming with the bitrate b̄ of 1.2Mbps,
which is the default setting in the industry. wji is the instant
workload of CDNi at time j. To this end, the accumulative cost
Cu for trajectory Tu will be calculated as Cu =

∑
i

∑
j c
j
i .

NN Representation. We implement Zwei for the CLS
task as suggested by LTS [12]. More precisely speaking, for
each CDN provider CDNi, Zwei passes past 20 normalized
workloads and stalling ratio to a Conv-1D layer with filter=64,
size=4, and stride=1. Then several output layers are merged
into a hidden layer that uses 64 units to apply the Softmax
activation function. We model the action space as a heuristic
way: each CDN provider has 3 choices instead: increase its
configuration ratio by 1%, 5%, and 10% based on the previous
stalling ratio. And Zwei will reduce the ratio for CDN that
obtained the worst previous ratio.

Requirements for CLS tasks. In this case, Zwei is pro-
posed to achieve a less stalling ratio with lower costs. Same
as Alg. 1, we use the threshold η for separating the cyclic
game and the transitive game.

Baselines. Like other scenarios, we also compare Zwei with
the following state-of-art scheduling baselines:

1) Weighted round-robin [35]. The idea of weighted round-
robin (WRR) is: the requests will be redirected to differ-
ent CDN providers w.r.t a constant ratio. We adopt the
algorithm with the best parameters.

2) E2 [5]. Exploitation and Exploration (E2) algorithm
utilizes harmonic mean for estimating CDN providers’
performance and select with the highest upper confidence
bound of reward. We use the E2 algorithm provided by
the authors [5].

3) Learn To Schedule (LTS) [12]. The state-of-the-art CLS
algorithm which uses deep reinforcement learning to train
the NN towards a lower stalling ratio. However, it ignores
the trade-off between cost and performance. We use the
trained LTS model provided by Zhang et al.

B. Zwei vs. State-of-the-art Scheduling Methods

As shown in Figure 11(c), we find that Zwei stands for
the best scheme among the candidates. For example, com-
paring with recent heuristics, such as the weighted round-
robin and E2 method, Zwei not only reduces the stalling
ratio by 15.54%-17.14% but also decreases the overall costs
by 16.97%-17.42%. Specifically, Zwei reduces the overall
costs by 22% compared with state-of-the-art learning-based
method LTS and decreases over 6.5% in terms of the overall

stalling ratio. The reason is that the vanilla LTS algorithm
takes the weighted-sum-based combination function as the
reward, while the function can hardly give clearer guidance
for the optimized algorithm. Moreover, we offline computed
the optimal policy w.r.t the original reward function provided
by the LTS paper. Comparing the performance of Zwei with
the optimal strategy, we observe that both optimal policy and
Zwei are on the Pareto front. Zwei consumes less pricing costs
than the optimal policy since the requirement is to minimize
the cost first. Moreover, we present the training process in
Figure 11(d). As shown, Zwei converges in less than 600
epochs, which needs about 2 hours. It’s worth noting that
Zwei also experienced two stages on the CLS task. The first
stage ranges from 0 to 100 epochs, and we can see the
goal of Zwei is to minimize the cost without considering the
number of stalling ratios. For the rest of the stage, we find
that Zwei attempts to reduce the number of stalling ratios,
and at the same time, the cost converges to a steady-state.
Such observation also proves that Zwei learns the strategies
by following the given requirements.

VI. CASE III: REAL-TIME COMMUNICATION

To better understand how Zwei performs in the RTC task,
we develop a faithful packet-based network emulation testbed,
train Zwei via various real-world network traces, and validate
Zwei with scale. As expected, results also prove the superiority
of Zwei against existing methods.

RTC Overview. The RTC system contains a sender and
a receiver, and its transport protocol mainly consists of two
channels: the streaming channel and the feedback message
channel. In the beginning, the sender sends the video packets,
denoted as a packet train to the receiver. The receiver then
feeds the network status observed back to the sender. Based
on this information, the sender will select a proper bitrate for
the next period. We place Zwei as the RTC control module on
the sender-side.

A. Detailed Implementation

Network Simulator Setup. We implement a faithful net-
work simulator inspired by the queuing theory and several re-
cent state-of-the-art congestion control platforms [36]. During
training, we first randomly pick one network trace from the
network trace dataset and uniformly set the basic RTT, loss
ratio, and queue length for the selected trace. Then we adopt
the network simulator to compute some metrics at the packet
level, such as delay gradient, deliver rate, receive rate. Finally,
we integrate the collected metrics every 100 milliseconds.

NN Architecture Overview. We take past sending rate,
past receive rate, delay gradient, round-trip time (RTT), and
loss ratio as the input. Besides, we output the NN as 11-dims
vector to control the sending rate, which represents {-0.4, -0.3,
-0.2, -0.1, -0.05, 0.0, 0.05, 0.1, 0.2, 0.3, 0.4}. Inspired by the
additive-increase, multiplicative-decrease (AIMD) algorithm,
we take different logic to increase or decrease the sending rate.
Zwei increases the sending rate rt as rt = rt + rmax × at,
and reduces the sending rate via rt = rt × (1 − at). For the
NN representation, Zwei leverages Conv-1D layers to extract
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(a) HSDPA (b) WiFi

Fig. 12. The comparison of Zwei and WebRTC as well as TCP on both
HSDPA and WiFi network datasets.

(a) Available Bandwidth (b) TCP-Reno

(c) WebRTC (d) Zwei

Fig. 13. The comparison of Zwei and existing methods over the HSDPA
network trace.

features for each metric, and employ a FC-layer to output two
networks. Here we set past sequences k as 10.

We bound the sending rate to 100kbps-4mbps. We apply the
combination of 1D-CNN and Fully connected layers to extract
the feature and then merge it into a vector. At first, we use 1D-
CNN with 64 filters and filter size=4 for extracting sequence
features. Then the features will be merged by a combination
layer. Subsequently, we leverage a 64-dim, fully connected
layer to down-sample the collected features. Finally, the NN
has two outputs i) the policy network, representing as the 11-
dim vector with the Softmax active function, and ii) the value
network with the Tanh active function.

Requirements for RTC tasks. In this RTC task, we aim to
minimize the one-way delay and loss ratio and maximize the
sending rate. Moreover, considering that measuring the one-
way delay metric is required to modify the transport protocol,
while the basic algorithm TCP-Reno fails to measure it in
practice, we further leverage the RTT metric to take the place
of the one-way-delay metric. Inspired by previous work [36],
we adopt 95 percentile RTT that must be experienced between
a sender and receiver.

RTC Baselines. We compare Zwei with several proposed
heuristic methods, including:

1) TCP-Reno [4]. The most popular congestion control
algorithm on the Internet. The key insight of the pro-
posed algorithm is the additive-increase, multiplicative-
decrease (AIMD) method, which means a linear increase
of the congestion window with an exponential reduction
when congestion is detected. We adopt TCP-Reno with
fast recovery.

(a) Available Bandwidth (b) TCP-Reno

(c) WebRTC (d) Zwei

Fig. 14. We also compare Zwei with existing methods over the trace collected
from the real-world WiFi scenario.

2) WebRTC [13]. State-of-art RTC scheme on both aca-
demics and industry. More precisely speaking, WebRTC
leverages delay-based and loss-based modules to jointly
control the rate adaption problem in the real-time sce-
nario, where its parameters have been carefully tuned for
almost one decade. In this work, we adopt WebRTC from
its open-sourced repository.

B. Zwei vs. RTC Baselines

In this experiment, we compare Zwei with existing proposed
heuristic methods (§VI-A) on various network conditions such
as 3G and WiFi. We collect average receiving bitrate, 95 per-
cent round-trip-time (RTT) as well as average loss ratio every 1
second. Results are reported in Figure 12. We demonstrate that
Zwei improves 11.34% on average receiving bitrate, reduces
20.49% in terms of the loss ratio, and decreases 62.95% on 95-
percent RTT compared with WebRTC under HSDPA dataset.
Other results on the WiFi network conditions show that Zwei
also outperforms WebRTC, with the improvements on sending
rate of 12.08% and decreasing in 95% RTT of 13.59%. The
comparison of Zwei and TCP-Reno illustrates that Zwei can
effectively detect the congestion signal and dynamically adjust
the sending rate to avoid the high loss ratio and RTT.

To better understand the performance of the selected meth-
ods, we report two representative results from the validation
dataset and compare the sending rate curve of Zwei with TCP
and WebRTC. As demonstrated in Figure 13 and Figure 14,
we observe that Zwei can accurately estimate the bottleneck
of the session since it always sends video streaming with high
bitrates while also avoids congestion events. For instance,
Figure 13 illustrates how the proposed algorithms perform
over the HSDPA network conditions. The HSDPA network
trace is quite challenging, since the low up-link capacity and
the high variance of available bandwidth. We can see that the
typical TCP congestion control algorithm TCP-Reno always
obtains a higher receiving rate, while its exploration process
uses fixed rules or strategies, which thereby often exceeds the
rated transmission rate. On the contrary, the policy of WebRTC
can better adapt to the 3G’s network fluctuation. However, due
to the strategy dependence on the estimated delay gradients,
its overall performance is slightly conservative as well as fails
to achieve a higher receiving rate. While Zwei’s strategy is
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different from previous methods: On the one hand, in the
non-stationary network condition, it dynamically switches the
sending rate for avoiding congestion events. On the other hand,
in the stationary network environments, it quickly detects the
maximum sending rate and maintains the transmission rate
until the congestion event happens. Figure 14 shows the same
observation in comparison of the performance over HSDPA
network traces.

VII. BEYOND ZWEI: PRACTICAL ANALYSIS

Considering that Zwei is impractical in the real-world since
Zwei has to roll out from the same starting point, in this
section, we further investigate the probability to make the
proposed scheme more practical, i.e., training Zwei in the
vanilla no-regret reinforcement learning settings. Such settings
only allow the environment with the same setting to appear
once, which are quite common in the real world.

A. Methodology
As we mentioned before, Zwei’s battle competition process

uses a Rule to estimate the win rate by the trajectories
which are collected from the same environment settings. More
detailed explanation is listed in Eq 17, where πθ is the
current policy, gi is the Gumbel(0,1) distribution sampled
by the agent i, and Env represents the given environment.
We can immediately see that the two trajectories Ti and Tj
must be sampled from the environment Env with the same
settings. However, in the real world, the same environment
is unlikely to appear more than once. In other words, real-
world reinforcement learning is often considered as a no-
regret exploration-exploitation in episodic Markov decision
processes rather than regret learning in simulated and repeated
environments.

oji = φ[T (πθ, gi︸ ︷︷ ︸
Action

,Env), T (πθ, gj︸ ︷︷ ︸
Action

,Env)]. (17)

Followed by this step, we modify Eq. 17 to Eq. 18 for
varying traditional RL settings, in which Envi and Envj
are different environments initialized by agent i and j. For
example, in the ABR scenario, the two environments are
represented as two different video descriptions and network
traces. Thus, as described in Eq. 19, one intuitive idea is to
optimize Zwei robustly is to use a constraint on the similarity
Dist between the Envi and the Envj , where Dist(·) denotes
a function to measure the dissimilarity.

oji = φ[T (πθ, gi︸ ︷︷ ︸
Action

,Envi), T (πθ, gj︸ ︷︷ ︸
Action

,Envj)]. (18)

s.t.Dist(Envi||Envj) ≤ ζ. (19)

Here ζ is a hyper-parameter that controls whether the
current comparison is acceptable or not. The higher ζ means
low variance but inaccurate win rate estimation, as the lower
ζ yields high variance but accurate win rate estimation. Thus,
how to select a proper ζ for each task is also a non-trivial
problem for training Zwei better. We will discuss the choice
of ζ for the ABR task in §IV.

Env 1 NN

Env 2 NN

Env 3 NN

Env N NN

…

Dist(Env1||Env2)

Phase 1:
Rollout 

Sampling

Phase 2&3:
Battle Competition

Win Rate Estimation

Phase 4:
Policy

Optimization

Win
Rate

Fig. 15. Zwei+ Overview. The framework is mainly composed of four
phases: rollout sampling, battle competition, win rate estimation, and policy
optimization.

B. Framework Overview

Inspired by the key ideas of deploying Zwei in the con-
ventional no-regret RL setting, we propose a novel real-world
self-play RL framework called Zwei+. The system overview
of Zwei+ is shown in Figure 15, which also mainly consists
of 4 phases, i.e., rollout sampling, battle competition, win rate
estimation, as well as policy optimization. The overall training
process is shown as follows.

Phase 1: Rollout Sampling. Followed by the traditional RL
parallel training process, we rollout N different trajectories Tn
for each agent respectively. For each episode, the Zwei+’s
learning agent meets various environments independently.
Here please note that the policy πθ of each agent is the same.

Phase 2: Battle Competition. Given two trajectories Ti and
Tj collected by different agents i and j, we have to compute
the similarity between that two trajectories for avoiding the
inaccurate win rate estimation (§VII-A). The result of battle
competition on Ti and Tj will be stored if the computed
similarity lower than the threshold ζ. Otherwise, it will be
dropped if the computed similarity higher than threshold ζ.

In the rest of the phases, we use the original win rate
estimation process for estimating Zwei+’s win rate and employ
Dual-PPO [10] to optimize the NN since the goals of that two-
phase are the same.

C. Evaluation in ABR Scenario

In this part, we consider applying Zwei+ in the ABR
scenario for evaluating the performance. The key reason is
the ABR task is more popular and easy to follow compared
with the RTC task, and in the meanwhile, its environment
is also more complicated compared with the CLS task. We
now explain the detailed evaluation methodology, including
similarity function design, experimental settings as well as
evaluation results.

Similarity Function Design. One of the important chal-
lenges in deploying Zwei+ on ABR tasks is to determine
how to measure the similarity between environments. In the
ABR scenario, the environment is often constructed by a set
of network traces and videos. Recent studies indicated that
the throughput traces can be characterized by a specific mean
(µ) and variance (σ) [37]. Hence, we extract the mean and
variance for each trace, where the trace is collected by the
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Fig. 16. Comparing Zwei+ with state-of-the-art ABR approaches, including RB, BOLA, etc.

ABR player itself. In detail, we compute the similarity with
the following steps:

1) In common, the network trace is represented as {Ck, Dk},
in which Ck is a vector that stored the throughput measured
by chunk [k−N+1, k], and Dk means the download time
for each chunk [k − N + 1,k], and N=8 is the sequence
length. We employ the weighted mean C̄ and variance
V ar(C) of the weighted mean for extracting mean and
variance features.

2) Having estimated the weighted mean and variance of
throughput traces, we then leverage rooted mean square
error (RMSE) to compute the distance between the two
{µ, σ2} pairs. Here please note that we can use another
type of formulation to evaluate the distance.

3) Finally, we use a threshold ζ to filter the proper network
trace into comparison. The competition result will be stored
if only the calculated Dist(.) is lower than ζ. In this work,
we set ζ as 0.01. We further implement an experiment to
investigate the influence of ζ on the proposed method.

Zwei+ Training Details. Zwei+ also adopts multi-agent
parallel training technologies, as it leverages 12 agents for
collecting trajectories from various network traces and utilizes
1 central agent to compute win rate w.r.t the collected samples.
Here we apply OpenMP [38] for accelerating the win rate
estimation on the central agent. We train Zwei+ to minimize
rebuffering time while maximizing video bitrates (rebuffer,
bitrate). The training time lasts over 24 hours, which is 6-
times slower than the vanilla Zwei. The key reason is Zwei+

has to collect more samples than the original Zwei for finding
the trajectories collected from a similar environment.

Zwei+ vs. Baselines. We compare Zwei+ with various
existing methods, including RB [31], BOLA [17], RMPC [15],
Pensieve [6] and Zwei. The evaluation results are reported in
Figure 16, where the ABR’s performance are computed by
Elo-ratings [11]. Two key observations can be drawn from
Figure 16(a). First, although Zwei+ lacks time efficiency
compared with the vanilla Zwei method, it has also converged
within 300 steps, which rivals the previously proposed ap-
proach. Second, we also observe that the performance gain
in Elo rating between Zwei+ and existing ABR baselines is
approximately 127%, 40%, 25%, and 23% for Rate-based,
BOLA, RMPC, and Pensieve, respectively. Such observation
confirms that Zwei+ has the abilities to learn the strategies
from the real-world ABR environments, aka no-regret RL
settings since our proposed similarity function design (§VII-C)
enables Zwei+ for better merging the samples collected from
the similar environment. Moreover, we report the average

bitrate and total rebuffering time for each ABR algorithm
in Figure 16(b). Zwei+ reduces the total rebuffering time
of 89.48%, 88.55%, 76.41%, 52.47%, 40.67% (Rate-based,
BOLA, RMPC, Pensieve, and Zwei), as well as increases
the average bitrate within each stream of 21.03%, 0.96%,
1.41%, 6.48% (Rate-based, BOLA, RMPC, Pensieve), except
with respect to the vanilla Zwei (-1.2%). Here it’s notable
that both Zwei and Zwei+ have achieved Pareto front per-
formance, while Zwei+ performs better according to the
requirement (See Alg. 2).

Zwei+ with different ζ. As we have mentioned before,
it’s critical to take a proper threshold ζ for measuring the
similarity between environments. We make two experiments
in this part. First, we set up several experiments to discuss
if it’s necessary to apply the similarity function for Zwei+.
As shown in Figure 16(c), we compare Zwei+ with that of
using the function and without using that function. At the
same time, we add two baselines, i.e., Zwei and Pensieve.
Results illustrate that, without using any similarity function to
separate the collected trajectories, the trained policy can hardly
converge to optimal ABR decisions (see the green curve).
By contrast, Zwei+ leverages the function that enables the
selection of only optimal decisions during the ABR process,
and especially, rivals or performs recent state-of-the-art ABR
algorithms. Thus, we find that a good similarity function is
non-trivial for optimizing Zwei in the no-regret RL environ-
ment. Second, Figure 16(d) demonstrates the Elo-ratings of
Zwei+ with different ζ, including the original Zwei, ζ = 0.1,
ζ = 0.03, and ζ = 0.01. We see that with the decreasing
of ζ, the overall Elo-rating of Zwei+ will achieve the higher
score. In particular, Zwei+ with ζ = 0.01 can finally obtain the
highest Elo-ratings, which even rivals the vanilla Zwei. Hence,
we believe that ζ = 0.01 represents the best parameters for
this ABR work.

VIII. RELATED WORK

A. Heuristic Methods

Adaptive Bitrate Video Streaming. Heuristic-based ABR
methods adopts throughput prediction (E.g., FESTIVE [31])
or buffer occupancy control (E.g., BOLA [17]) to choose the
proper bitrate for the ABR task. However, such approaches
suffer from either inaccurate bandwidth estimation or long-
term bandwidth fluctuation problems. Then, MPC [15] picks
next chunks’ bitrate by jointly considering throughput and
buffer occupancy. Nevertheless, MPC is sensitive to its pa-
rameters since the it relies on well-understanding different
network conditions. Oboe [19] even proposes an auto-tuning
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method to tune the traditional heuristic methods to achieve
better performance in different network settings. Moreover, Lu
et al. [39] investigates how video-quality information can be
exploited by HTTP-based adaptive streaming clients in their
rate adaptation schemes.

Crowd-sourced Live Streaming. The details of how a
particular live-streaming platform chooses CDNs or schedules
users to different CDNs are uncertain. However, through
preliminary measurements, it is widely accepted that the
strategies are largely statically configured (e.g., [35]). In recent
years, dynamic scheduling across different CDNs has received
more attention. [40] are model-based methods which update
their model through real time measurement and predict the
performance of CDN candidates for the next-time. However,
they are significantly affected by the accuracy of modeling. [5]
uses E2 method to replace traditional model-based methods,
which is the state-of-the-art algorithm. Though E2 does not
use any pre-modeling and only make decisions in real-time
way, it underutilizes the states and time sequence information.

RTC Rate Adaption. Rate adaption methods are mainly
composed of loss-based approach [4], attempting to increase
bitrate till packet loss occurs, and delay-based approach [41],
which attempts to adjust sending rate to control the trans-
mission delay. However, recent methods are sensitive to net-
work conditions. Thus, model-based approach, such as We-
bRTC [13], have been proposed to control the bitrate based on
previous status observed, including past sending rate, receiving
rate, delay gradients, as well as loss ratio.

In short, heuristic-based methods require careful tuning their
parameters. Moreover, such methods are often myopic, one-
shot, and only consider instant rewards.

B. Learning-based Schemes

In the adaptive video streaming scenario, Mao et al. [6]
develop an ABR algorithm called Pensieve. Pensieve leverage
DRL method to generate a strategy towards higher reward
feedback, where the reward function is represented as the sim-
ple weighted sum of several critical factors. Moreover, several
schemes combine learning-based and model-based approaches.
For example, Bentaleb et al. propose AMP that encompasses
techniques for bandwidth prediction and model auto-selection
specifically designed for low-latency live steaming with chun-
ked transfer encoding [37]. Stick is a harmonious fusion
approach which fuse the learning-based and the conventional
buffer-based approach [42]. While these studies are often
optimized towards a specific linear-based objective function.
The only study that is similar to our proposed framework is
Tiyuntsong [8]. Tiyuntsong optimizes itself towards a rule or a
specific reward via the competition with two agents under the
same network condition. However, Tiyuntsong lacks training
stability that makes it difficult to be deployed in the real-world.

In the crowd-sourced live streaming scheduling field,
LTS [12] is the first DRL-based scheduling approach that
outperforms previously proposed CLS approaches. Further-
more, the authors propose FAST-LTS [43] to balance the
learning efficiency and computational cost. Specifically, they
employ end-to-end learning-based methods to schedule viewer.

However, since these methods all use QoS as the optimization
objective, they seldom consider the correlation between the
stalling ratio and the additional cost affected by the workload.

Furthermore, in the real-time video transmission services,
QARC [7] is a DRL-based approach that optimizes a NN
towards higher perceptual video quality and less stalling
events. Meanwhile, OnRL trains the NN online for avoiding
the simulation-to-reality gap [44]. Nevertheless, we also find
that the performance of QARC and OnRL is quite sensitive
to parameter settings of the reward function.

IX. CONCLUSION

Off-the-shelf learning-based video transmission techniques
optimize themselves towards the linear-combination of sev-
eral weighted objectives with mutual restriction rather than
deterministic requirements, which might finally generalize a
strategy that violates the original demand. We propose Zwei,
a self-play reinforcement learning framework that utilizes
the comparison outcome between several samples to enhance
itself towards a better win rate. We implement and evaluate
Zwei over various video transmission tasks. Results show that
Zwei outperforms baselines with the improvements of more
than 22% in terms of three fundamental video transmission
tasks (32.24% on Elo score over the adaptive streaming, 22%
on stalling ratio over the crowd-sourced live streaming, and
11.34% on average receiving rate over real-time communica-
tion). Furthermore, leveraging a specific battle competition
phase, we extend Zwei to perform well in the reinforcement
learning with no-regret settings.
Acknowledgement. We thank the TMM reviewers for the
valuable feedback. This paper extends [45] by adding video
transmission scenarios and proposes novel method which
improves Zwei to work in the no-regret learning task.
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